TECHNICAL REPORT AND MAIDEN MINERAL RESOURCE ESTIMATE, PONY CREEK PROPERTY, ELKO COUNTY, NEVADA, USA

Prepared For: Contact Gold Corp.

Suite 1050, 400 Burrard St. Vancouver BC V6C 3A6

Canada

Prepared by: APEX Geoscience Ltd.

100-11450 160 St. NW Edmonton AB T5M 3Y7

Canada

Michael B. Dufresne, M.Sc., P.Geol., P.Geo. Fallon T. Clarke, B.Sc., P.Geo.

Effective Date: February 24th, 2022 Signing Date: February 24th, 2022

Contents

1	Summary	1
	1.1 Issuer and Purpose	1
	1.2 Authors, Contributors and Site Inspection	1
	1.3 Property Location, Description and Access	2
	1.4 Geology and Mineralization	3
	1.5 Historical Exploration	4
	1.6 Recent Exploration by Contact Gold	
	1.7 Metallurgical Testing by Contact Gold	
	1.8 Current Mineral Resource	
	1.9 Conclusions and Recommendations	
2	Introduction	
	2.1 Issuer and Purpose	
	2.2 Authors, Contributors and Site Inspection	
	2.3 Sources of Information	. 16
	2.4 Units of Measure	
3	Reliance of Other Experts	
4	Property Description and Location	
-	4.1 Description and Location	
	4.2 Agreements and Royalties	
	4.3 Environmental Liabilities, Permitting and Significant Factors	
5	Accessibility, Climate, Local Resources, Infrastructure and Physiography	
-	5.1 Accessibility	
	5.2 Site Topography, Elevation and Vegetation	
	5.3 Climate	
	5.4 Local Resources and Infrastructure	
6	History	
	6.1 Regional Exploration of the Property Area	
	6.2 Property Scale Exploration	
	6.2.1 Historical Ownership and Exploration Summary (1980-2014)	
	6.2.2 Historical Drilling (1981-2007)	
	6.3 Historical Mineral Resource Estimates at the Pony Creek Property	
	6.3.1 Historical Resources Prior to CIM Definition Standards and Guidelines.	
	6.3.2 Historical 2004 – 2006 Resource	. 45
	6.4 Historical Production at the Pony Creek Property	. 46
7	Geological Setting and Mineralization	
	7.1 Regional Geology	
	7.2 Geology of the Piñon Range	. 49
	7.2.1 Piñon Range Regional Tectonics and Structure	
	7.3 Property Geology	
	7.4 Mineralization	
	7.4.1 Bowl Zone	
	7.4.2 Stallion Zone	
	7.4.3 Appaloosa Zone	
	7.4.4 Pony Spur	

	7.4.5 Palomino, Mustang, Elliott Dome and DNZ	
	7.4.6 East Bailey	
8	Deposit Types	
9	Exploration	
	9.1 Geological Mapping	
	9.2 Surface Geochemistry	
	9.2.1 Soil Sampling	
	9.2.2 Rock Sampling	78
	9.3 Geophysics	80
10	Drilling	83
	10.1 Historical Drilling Summary (1981-2007)	83
	10.2 Contact Gold Drilling Summary (2017-2019)	85
	10.2.1 Bowl Zone	
	10.2.2 Stallion Zone	
	10.2.3 Appaloosa Zone	101
	10.2.4 Pony Spur	106
11	Sample Preparation, Analyses and Security	108
	11.1 Historical Exploration (1981-2014)	
	11.1.1 Sample Collection, Preparation and Security	
	11.1.2 Analytical Procedures	
	11.1.3 Quality Assurance – Quality Control	
	11.2 Contact Gold Surface Exploration (2017-2019)	
	11.2.1 Sample Collection, Preparation and Security	
	11.2.2 Analytical Procedures	
	11.2.3 Quality Assurance – Quality Control	
	11.3 Contact Gold Drill Programs (2017-2019)	
	11.3.1 Sample Collection, Preparation and Security	
	11.3.2 Analytical Procedures	
	11.3.3 Quality Assurance – Quality Control	
	11.3.3.1 2017 Drill Program	
	11.3.3.2 2018 Drill Program	
	11.3.3.3 2019 Drill Program	
	11.4 Adequacy of Sample Collection, Preparation, Security and Analytical Proced	
12	Data Verification	
	12.1 Qualified Person Site Inspection	131
	12.2 Data Verification Procedures	
	12.3 Validation Limitations	
	12.4 Adequacy of the Data	137
13	Mineral Processing and Metallurgical Testing	
	13.1 2018 Contact Gold Metallurgical Testing	
	13.2 2020 Contact Gold Metallurgical Testing	
14	Mineral Resource Estimates	
	14.1 Introduction	
	14.2 Drillhole Data Description	
	14.2.1 Drillhole Data	

14.2.2 Mineral Resource Estimate Drillhole Database	142
14.3 Mineralization Trend Surfaces	
14.3.1 Geological Interpretation of Mineralization Domains	
14.4 Estimation Domain Interpretation	
14.5 Exploratory Data Analysis and Compositing	
14.5.1 Bulk Density	
14.5.2 Raw Analytical Data	
14.5.3 Compositing Methodology	
14.5.4 Orphan Analysis	
14.5.5 Capping	
14.5.6 Declustering	
14.5.7 Final Composite Statistics	
14.6 Variography and Grade Continuity	
14.6.1 Estimation Domain Variography	
14.6.2 Contact Analysis	
14.7 Mineral Resource Estimate Block Model	160
14.7.1 Block Model Parameters	
14.7.2 Volumetric Checks	
14.8 Grade Estimation Methodology	
14.9 Model Validation	
14.9.1 Statistical Validation	
14.9.1.1 Directional Trend Analysis Validation	
14.9.1.2 Volume-Variance Analysis Validation	
14.9.1.3 Boundary Analysis Validation	
14.9.2 Visual Validation	
14.10 Mineral Resource Classification	
14.11 Evaluation of Reasonable Prospects for Eventual Economic Extra	
14.12 Mineral Resource Reporting	
14.13 Risk and Uncertainty in the Mineral Resource Estimate	179
3 Adjacent Properties	
23.1 Railroad-Pinion Project	
23.1.1 Dark Star Deposit	
23.1.2 Pinion.	
23.1.3 North Bullion	
23.1.4 POD	
23.1.5 Jasperoid Wash	
23.2 Rain Mine	
23.3 Emigrant Mine	
24 Other Relevant Data and Information	
25 Interpretation and Conclusions	
25.1 Historical Exploration	
25.2 Recent Exploration by Contact Gold	
25.3 Metallurgical Testing by Contact Gold	
25.4 Current Mineral Resource	
25.5 Risks and Uncertainties	
26 Recommendations	
.u 1.0001111115114ati0113	। শুত

27 References	
Tables	
Table 1.1. Pony Creek Mineral Resource Estimate	9
Table 1.2. Proposed budget for the recommended exploration programs at the Creek Property. Currency is in US dollars	
Table 4.1. Schedule of advance royalty payments for the Jennings Claims	
Table 6.1. Historical drilling at the Pony Creek Property (1981-2007)	39
Table 6.2. Historical drilling significant gold intercepts, northern Pony Creek Prope	
Table 6.3. Historical drilling significant gold intercepts, East Bailey	
Table 7.1. Piñon Range Stratigraphy	
Table 7.2. Significant results of drilling at the Pony Spur target	
Table 9.1. Geological legend for Figure 9.1	
Table 9.2. Micropaleontology analysis results from Pony Creek	74
Table 10.1. Drillholes contained within Contact Gold's database for the Pony	Creek
Property (1981-2019)	
Table 10.2. 2017 Contact Gold drillhole collar information	
Table 10.3. 2018 Contact Gold drillhole collar information	
Table 10.4. 2019 Contact Gold drillhole collar information.	
Table 10.5. Significant results of Contact Gold's 2017-2019 drill programs at the	
Zone	
Table 10.6. Significant results of Contact Gold's 2018-2019 drill programs at the S	
ZoneTable 10.7. Significant results of Contact Gold's 2018-2019 drill programs a	
Appaloosa Zone	
Table 10.8. Significant results of Contact Gold's 2018-2019 drill programs at the	Ponv
Spur target	
Table 11.1. Summary of 2017 RC duplicate ALS re-runs	
Table 12.1. Drill collar coordinate comparison table	
Table 12.2. Pony Creek QP site visit verification rock grab sample locations and re	
Table 12.3. QP site visit verification pulp sample results	
Table 13.1. Summary of ALS bottle roll test results for Bowl Zone composites	
Table 13.2. 2020 Cyanide bottle roll test results.	
Table 14.1. Density values by Lithological Unit	
Table 14.2. Summary statistics of raw gold assays from sample intervals flagged	
the estimation domain	151
Table 14.3. Orphan analysis comparing the gold statistics of raw assays and unc	
composite samples with and without orphans	
Table 14.4. Capping levels applied to composites before estimation	
Table 14.5. Cell sizes used to calculate declustering weights in the estimation do	
Table 14.6 Statistics of declustered composites inside the estimation domain	
Table 14.0 Statistics of declustered composites inside the estimation domain	
Table 11.7 Vallegiam model parameters	101

Table 14.8. 3D block model size and extents: Appaloosa Domain	160
Table 14.9. 3D block model size and extents: Bowl Domain	161
Table 14.10. 3D block model size and extents: Stallion North Domain	161
Table 14.11. 3D block model size and extents: Stallion South Domain	161
Table 14.12. Estimation domain wireframe versus block-model volume comparison. 1	
Table 14.13. Estimation Search and Kriging Parameters	
Table 14.14. Parameters for Lerchs-Grossman pit optimization for the Mineral Resou	
Estimate1	
Table 14.15. The recommended reported resource estimate constrained within	
"\$1,600/oz" pit shell	22d
Table 14.16. Appaloosa domain sensitivity analysis of the undiluted ounces constrain	
within the "\$1,600/oz" pit shell	
Table 14.17. Bowl domain sensitivity analysis of the undiluted ounces constrained wit	
the "\$1,600/oz" pit shell	
Table 14.18. Stallion domain sensitivity analysis of the undiluted ounces constrain	
within the "\$1,600/oz" pit shell1	
Table 25.1. Pony Creek Mineral Resource Estimate1	
Table 26.1. Summary of estimated costs for the recommended work programs at	the
Pony Creek Property1	195
Figures	
Figure 2.1. General location of the Pony Creek Property	. 14
Figure 4.1. Unpatented lode claims (n=1,032 claims) of Pony Creek	
Figure 4.2. Property map showing Plan of Operations permit boundary and BLM Not	
areas	23
Figure 6.1. Gold deposits, mineralized zones and Carlin mineral trend with US	
Regional Bouguer Gravity Data	
Figure 6.2. Gold deposits, mineralized zones, Carlin mineral trend and interpre	
structural features with USGS Regional Residual Aeromagnetic Intensity Da	
Structural leatures with 0000 Negional Nesidual Aeromagnetic intensity Da	
Figure 6.3. Historical rock geochemistry (Au) contained within Contact Gold's databa	
Figure 6.4. Historical soil geochemistry (Au) contained within Contact Gold's databa	
	. 31
Figure 6.5. Historical drilling completed by previous operators from 1981-2007	
Figure 6.6. Historical RC Drillhole locations with gravity and interpreted faults, East Bai	-
area	
Figure 6.7. Historical RC Drillhole locations with inverted CSAMT 1,650 m elevation sli	ice,
	. 36
Figure 6.8. Long-section showing historical RC drillholes on 3D modeled inverted CSA	MT
resistivity data (looking west)	
Figure 6.9. Oblique long-section showing historical RC drillholes on 3D modeled inver	
CSAMT resistivity data (looking southwest)	
Figure 7.1. Regional geology.	
Figure 7.2. Detailed geological map of the northeastern portion of Pony Creek	52
. igaic Detailed geological map of the northeadtern portion of 1 only of core	. 52

Figure 7.3. Detailed stratigraphic section, Pony Creek (from Spalding, 2018).	
Figure 7.4. East Bailey cross section facing northeast, straddling Hill 6405	
Figure 7.5. Mineralized zones and anomalous areas in the northern portion of Creek Property.	•
Figure 7.6. Resource areas of the Pony Creek Property	
Figure 7.7. Schematic cross section of the main Bowl Zone with LVA sur	
estimation domains, as well as gold assays and downhole geology.	
Figure 7.8. Schematic cross section of the eastern edge of the Bowl Zone	
surfaces and estimation domains, as well as gold assays and	
geologyFigure 7.9. Schematic cross section of the South Stallion Zone with LVA (or min	oralization
trend) surfaces and estimation domains, as well as gold assays and	
geology	
Figure 7.10. Schematic cross section of the North Stallion Zone with LVA su	
estimation domains, as well as gold assays and downhole geology	
Figure 7.11. Schematic cross section of the Appaloosa Zone with LVA sur	
estimation domains, as well as gold assays and downhole geology	
Figure 8.1. Schematic diagram of a Carlin-type gold deposit showing	
structurally controlled and stratabound mineralization	
Figure 9.1. Geological interpretation map of the Pony Creek area showing bloc	
fault movements and target areas for the 2017-2018 mapping progra	
Figure 9.2. Location map of samples taken for micropaleontology analysis	
Figure 9.3. Soil geochemistry (Au) from Contact Gold's 2017-2018 soil	sampling
programs	
Figure 9.4. Grab and chip rock sample geochemistry (Au) from Contact Gold's	2017-2019
rock sampling programs	79
Figure 9.5. Processed first vertical derivative gravity map of the Pony Cree	k Property
showing stations, interpreted structures and interpreted alteration zo	
Figure 9.6. CSAMT lines completed at Pony Creek	
Figure 10.1. Drill collar locations.	
Figure 10.2. Plan map of drilling and gold intercepts at the Bowl Zone	
Figure 10.3. Cross section of the Bowl Zone looking east, 586250 m E	
Figure 10.4. Cross section of the Bowl Zone looking north, 4467100 m N	
Figure 10.5. Plan map of drilling and gold intercepts at the Stallion Zone	
Figure 10.6. Cross section of the North Stallion Zone looking east, 585890 m	
Figure 10.7. Cross section of the North Stallion Zone looking north, 4470080 r	
Figure 10.8. Plan map of drilling and gold intercepts at the Appaloosa Zone	
Figure 10.9. Cross section of the Appaloosa Zone looking east, 587020 m E	
Figure 10.10. Cross section of the Appaloosa Zone looking north, 4469310 m	
Figure 10.11. Plan map of drilling and gold intercepts at the Pony Spur target.	
Figure 10.12. East-west schematic cross section of Contact Gold's drilling at	
Figure 11.1. 2017 Duplicate fire access regults for Au	
Figure 11.1. 2017 Duplicate fire assay results for Au.	
Figure 11.2. 2017 Coarse blank fire assay results for Au	
Figure 11.3. 2017 Standard reference material (OxB130 Rock Labs) fire ass	•
	120

Figure 11.4. 2017 Standard reference material (OxE126 Rock Labs) fire assay re	esults. 121
Figure 11.5. 2017 Standard reference material (OxJ120 Rock Labs) fire assay re	esults.
Figure 11.6. 2018 Duplicate fire assay results for Au.	
Figure 11.7. 2018 Coarse blank fire assay results for Au.	
Figure 11.8. 2018 Standard reference material (OxB130 Rock Labs) fire assay results for Administration and the control of the	
Tigure 11.0. 2010 Standard Tolerende Material (CAB 100 Rook Edba) ine dosay in	124
Figure 11.9. 2018 Standard reference material (OxE126 Rock Labs) fire assay re	
Figure 11.10. 2018 Standard reference material (OxE143 Rock Labs) fire assay re	esults.
	125
Figure 11.11. 2018 Standard reference material (OxJ120 Rock Labs) fire assay re	
Figure 11.12. 2019 Duplicate fire assay results for Au.	
Figure 11.13. 2019 Coarse blank fire assay results for Au	
Figure 11.14. 2019 Standard reference material (OxB130 Rock Labs) fire assay reference	
Figure 44.45, 2040 Otan dard reference material (Ov. 5442 Deal, Labe) fire account	
Figure 11.15. 2019 Standard reference material (OxE143 Rock Labs) fire assay re	
Figure 11.16. 2019 Standard reference material (OxJ120 Rock Labs) fire assay re	
migure 11.10. 2019 Standard reference material (OX3120 Nock Labs) life assay in	
Figure 12.1. Core from drillhole PC06-06	
Figure 12.2. Mr. Dufresne's verification of Contact Gold drill collar PC19-21	133
Figure 12.3. QP site visit drill collar coordinate verification and grab sample local	
Figure 14.1. Cross section example of Appaloosa LVA surfaces	143
Figure 14.2. Cross section showing main Bowl Zone mineralization trend surfaces	
Figure 14.3. Cross section of trend surfaces on the east edge of the Bowl Zone	145
Figure 14.4. Cross section of North Stallion LVA surface	
Figure 14.5. Cross section of South Stallion Zone LVAsurfaces.	
Figure 14.6. Plan view of the estimation domains extents projected to surface	
Figure 14.7. Example of the estimation domains outline in an east-west cross s	
looking north along 429825N	
Figure 14.8. Cumulative frequency plot of raw gold assays from sample intervals fl	
within the estimation domain.	
Figure 14.9. Cumulative histogram of the sample interval lengths analyzed with estimation domain	
Figure 14.10. Orphan analysis comparing global cumulative histograms of raw a	
and uncapped composites with and without orphans contained with	
estimation domain	
Figure 14.11. Probability plot of the composited gold values before capping. C	
values highlighted in red	
Figure 14.12. Cumulative histogram of clustered and declustered composites insi	
estimation domain	156
Figure 14.13. Variogram Model used for Kriging: Appaloosa Domain	158

Figure 14.14. Variogram Model used for Kriging: Bowl Domain	158
Figure 14.15. Variogram Model used for Kriging: Stallion North/South Domains	159
Figure 14.16. Contact Analysis	160
Figure 14.17. Swath plots: Appaloosa Domain.	164
Figure 14.18. Swath plots: Bowl Domain	165
Figure 14.19. Swath plots: North Stallion Domain	165
Figure 14.20. Swath plots: South Stallion Domain.	
Figure 14.21. Volume variance grade/tonnage curves: Appaloosa Domain	167
Figure 14.22. Volume variance grade/tonnage curves: Bowl Domain	167
Figure 14.23. Volume variance grade/tonnage curves: North Stallion Domain	168
Figure 14.24. Volume variance grade/tonnage curves: South Stallion domain	168
Figure 14.25. Contact analyses along domain boundaries	
Figure 14.26. Visual validation cross section looking East: Appaloosa Domain	
Figure 14.27. Visual validation cross section looking North: Appaloosa Domain	
Figure 14.28. Visual validation cross section looking East: Bowl Domain	
Figure 14.29. Visual validation cross section looking North: Bowl Domain	
Figure 14.30. Visual validation cross section looking East: North Stallion Domain	
Figure 14.31. Visual validation cross section looking North: North Stallion Domain	
Figure 14.32. Drillhole data recovery decision metric	
Figure 14.33. Estimated recovery categories.	
Figure 23.1. Relevant properties adjacent to the Pony Creek Property	181
Appendices	
Appendix I – Pony Creek Property Mineral Claim List	205

1 Summary

1.1 Issuer and Purpose

This Technical Report (the Technical Report) has been prepared for the Issuer, Contact Gold Corp. (Contact Gold or the Company), a British Columbia (BC), Canada, based exploration company that is focused on producing district scale gold discoveries in Nevada (NV), United States of America (USA).

Contact Gold was formed pursuant to a reverse-takeover transaction between Winwell Ventures Inc. (Winwell) and Carlin Opportunities Inc. (Carlin) by way of a court-approved statutory plan of arrangement (the RTO Transaction). Immediately thereafter, Winwell continued into the State of Nevada and changed its name to Contact Gold. Contact Gold then acquired Clover Nevada II LLC (Clover Nevada) from a subsidiary of Waterton Precious Metals Fund II Cayman, LP (Waterton).

In 2021, Contact Gold redomiciled its incorporation from the State of Nevada to the Province of British Columbia as part of an internal reorganization.

The focus of this Technical Report is on the Pony Creek Property (Pony Creek or the Property), an exploration project held by Clover Nevada, situated in Elko County, NV. The Property lies at the southeast end of the Carlin Trend, a northwest alignment of gold deposits which represents one of the highest concentrations of gold globally in relation to its area. The Carlin Trend has produced more than 83 million ounces of gold and contains significant remaining resources and reserves as of December 2014 (Rhys et al., 2015).

This Technical Report summarizes a National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43-101) maiden mineral resource estimation (MRE) for the Property and provides a technical summary of the relevant location, tenure, historical and geological information, a summary of the recent exploration work conducted by the Issuer and recommendations for future exploration programs. This Technical Report summarizes the technical information available up to the effective date of February 24th, 2022.

This Technical Report has been prepared in accordance with the Canadian Securities Administration's (CSA's) NI 43-101 and guidelines for technical reporting Canadian Institute of Mining, Metallurgy and Petroleum (CIM) "Best Practices and Reporting Guidelines" for disclosing mineral exploration. The mineral resource has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines", dated November 29, 2019, and the CIM "Definition Standards for Mineral Resources and Mineral Reserves", amended and adopted May 10th, 2014.

1.2 Authors, Contributors and Site Inspection

This Technical Report has been prepared by Mr. Michael B. Dufresne, M.Sc., P. Geol., P. Geo., of APEX Geoscience Ltd. (APEX), and Ms. Fallon T. Clarke, B.Sc., P.Geo., of

APEX. Both authors are independent of the Issuer and are Qualified Persons (QPs) as defined in NI 43-101. Contributors to this Technical Report include Mr. Tyler Acorn, M.Sc., Mr. Warren Black, M.Sc., P.Geo. and Mr. Steven Nicholls, BA.Sc., MAIG, all of APEX. Under the direct supervision of Mr. Dufresne, Mr. Acorn and Mr. Black prepared the resource estimation statistical analysis, three-dimensional modelling, block modelling and resource estimations presented in Section 14. Mr. Steven Nicholls, BA.Sc., MAIG, a QP, and APEX's senior resource geologist performed an internal audit of the MRE presented in Section 14. Mr. Dufresne takes responsibility for the MRE reported herein.

Mr. Dufresne performed a site inspection of the Pony Creek Property on January 26-27, 2022. As part of the site inspection, Mr. Dufresne can verify the land position, the geological setting and the gold mineralization that is the subject of this Technical Report. During the site inspection, Mr. Dufresne collected 3 composite rock grab samples from the Stallion Zone, 15 pulp verification samples from drillhole PC18-03 and verified the location of a number of Contact Gold drill collars.

1.3 Property Location, Description and Access

Pony Creek is located in Elko County in north-central Nevada, approximately 35 kilometres (km) (21.8 miles) southeast of Carlin, NV, and 51 km (31.7 miles) southwest of Elko, NV. The Property consists of a land position totalling 8,177 hectares (20,205.8 acres) in the Railroad Mining District and comprises 1,032 unpatented lode claims that are owned, leased, or otherwise controlled by Clover Nevada. Ownership of the unpatented mining claims is in the name of the holder (locator), subject to the paramount title of the United States of America (USA), under the administration of the U.S. Bureau of Land Management (BLM).

Winwell, Carlin, Waterton Nevada Splitter LLC (then, the sole member of Clover Nevada II LLC) and Clover Nevada entered into the Securities Exchange Agreement dated December 8, 2016 and amended on January 31, 2017. Following the completion of the Securities Exchange Agreement in June 2017, and concurrently with closing of the Reverse Takeover (RTO) of Winwell by Carlin to form Contact Gold and its continuance into the State of Nevada, Contact Gold immediately acquired all of the issued and outstanding interests of Clover Nevada, including the Pony Creek Property, in exchange for the issuance of Contact Gold common shares representing 37 per cent (%) common share ownership, with a face value of CDN\$15,000,000, and a cash payment of CDN\$7,000,000.

Contact Gold expanded the Pony Creek Property in September 2017 and February 2018, with the addition of the Pony Spur Claims and the Umps, Lumps and Bailey Claims of the East Bailey property. The Property expansion is held by the following agreements:

1) An Asset Purchase Agreement (for the Pony Spur claims) between Richard R. Redfern and Joy A. Perry-Redfern d/b/a RMIC Gold, Clover Nevada and Contact Gold, dated September 8, 2017. On the closing date of this agreement, Contact Gold issued 75,000 common shares valued at CDN\$52,250 and a cash payment of CDN\$66,397 for

the Pony Spur Claims, which included a reimbursement to the vendors of BLM fees for that period.

2) An Asset Purchase Agreement (for the TFL and Jennings Claims) between Thorsen Fordyce Merchant Capital Inc., TF Minerals (USA) Inc. (TF Minerals), Clover Nevada and Contact, dated February 6, 2018, and the Exploration Lease and Option to Purchase Agreement between Donald K. Jennings and Thorsen-Fordyce Merchant Capital Inc. dated September 14, 2005. Contact Gold issued 250,000 common shares valued at CDN\$112,500 at the agreement date and granted a 2% Net Smelter Return (NSR) royalty on all minerals from the TF Claims. The option agreement includes advanced royalty payments due annually to Donald K. Jennings at 3% NSR on all minerals from the Jennings Claims, and an option to purchase the Jennings Claims for US\$1,000,000. The NSR may be reduced at any time by up to 2% at a price of US\$1,000,000 per 1% increment, prior to September 2030.

Year-round access to Pony Creek is provided via major and secondary access routes. Several un-maintained two-track roads transect the Property and provide access to the northern and southern portions of the Property. Winter snow and spring runoff may temporarily limit access with respect to drilling and other geological fieldwork activities between November and April each year but are not considered to be significant issues. Exploration and mining activities are expected to run year-round.

1.4 Geology and Mineralization

Pony Creek is situated in the Piñon Range within the south-central Carlin trend in the Basin and Range geological province of western North America.

The central part of the Piñon Range is composed of Ordovician through Mississippian marine sedimentary rocks that form a structural dome with calcareous clastic marine sedimentary rocks as young as early Permian along the margins. The Paleozoic sedimentary rocks have been intruded and overlain by subvolcanic and volcanic stocks, dikes and extrusive units of the Eocene Indian Well volcanic field. Prominent structural features in the Property area include the north-south trending Piñon Range anticline and the related "Piñon graben" and associated faults. Extensional Basin and Range faults have overprinted the Piñon Range anticline.

The outcropping geology in the northern portion of the Property where the gold resources are found is dominated by Middle to Upper Devonian through Permian carbonate and clastic sedimentary rocks. The surface geology of the southern part of the Property is predominately Quaternary sediments and Tertiary aged volcanic and sedimentary rocks. Near the axis of the Piñon Range anticline lies a porphyritic rhyolite intrusion, emplaced as a north-south elongated body that is approximately 3.2 km (2.0 miles) long and 1.2 km (0.7 miles) wide. It is variably hydrothermally altered and locally mineralized.

Three known mineralized zones of gold mineralization occur at Pony Creek, these include the Bowl, Appaloosa and Stallion zones. The gold mineralization discovered to date at Pony Creek is principally hosted within the Tertiary (or Jurassic) rhyolite, or within altered and silicified calcareous clastic rocks of the Pennsylvanian – Permian (Penn-Perm) Moleen Formation.

The Bowl Zone consists of repeating packages of sandstone, conglomerate and limestone with a rhyolite plug in the centre which spreads out laterally capping the repeating units. These units are offset by a series of steeply dipping faults that generally trend north to northwest. The main style of mineralization at the Bowl Zone is sub horizontal and follows the contact between the rhyolite cap and the underlying units. The second mineralization style at the Bowl Zone is a steeply east dipping pod of mineralization on the east edge of the Bowl Zone found within and near the rhyolite unit. This mineralization has a small north-south extension and is truncated by a fault further to the east which cuts off the mineralization.

The gold mineralization at the Appaloosa Zone is concentrated at the contact between a sub-horizontal sandstone unit and a rhyolite body near an overturned fold hinge.

The Stallion Zone is broken up into north and south mineralized zones. The mineralization at Stallion is interpreted as sub-horizontal and stratigraphic based. The rocks hosting gold mineralization at Stallion show strong silicification and oxidation of Penn-Perm calcareous sandstone in drilling and in sparse, recessive outcrops at surface.

Additional anomalous zones and target areas delineated at the Pony Creek Property include Pony Spur, Palomino, Mustang, Elliott Dome and East Bailey.

1.5 Historical Exploration

Several historical exploration and drilling programs have been conducted at the Property from 1980 to 2014 by Newmont Corp. (1980-1985, 1987-1989, 1997-1998), NERCO (1987), US Borax Exploration (1988-1989), Westmont Mining Inc. - Newmont Joint Venture (1990-1992), Ramrod Gold Inc. (1993), Uranerz U.S.A. Inc. (1994-1995), Quest International Management Services Inc. (1996-1997), Barrick Gold Exploration Inc. - Quest Joint Venture (1997-1998), Homestake Mining Company (1999-2000), Nevada Contact Inc. (2001-2003), Mill City International Corp. (2003), Grandview Gold Inc. (2004-2007), Consolidated Global Minerals (2006), AmMex Gold Mining Corp. (2007), Gold Run Inc. (2007) and Gold Standard Ventures Corp. (GSV) (2008-2014). Historical exploration has consisted of geological mapping, geochemical soil and rock sampling, geophysical surveying and drilling.

A total of 261 diamond drillholes (DDH) and reverse circulation (RC) drillholes, totalling 50,645 meters (m) (166,158 feet (ft)) have been completed at Pony Creek from 1981 to 2007. Most of the historical drilling was completed in the northern portion of the Property, in proximity to the Bowl, Appaloosa and Stallion zones. Historical drilling delineated a large zone of gold mineralization in the northern portion of the Property measuring

approximately 3.9 km (2.4 miles) long by 610 m (2,000 ft) wide on the southern end to 1,463 m (4,800 ft) wide on the north end of the area of interest.

In addition, historical drilling completed in the southern portion of the Pony Creek Property in the East Bailey target area returned anomalous to weakly mineralized gold values in drilling, many of which are located at or adjacent to the Webb Formation - Devil's Gate Formation contact, and in some dike breccia.

1.6 Recent Exploration by Contact Gold

As of the effective date of this Technical Report, surface exploration conducted on the Property by Contact Gold has included geological mapping, the collection of 7,118 surface soil samples, 441 rock chip and channel samples, 427 ground gravity stations with processing and interpretation, and an approximately 66 line-km (41 line-miles) of controlled-source audio-frequency magneto-tellurics (CSAMT) geophysical program.

The geochemical soil sampling program delineated several anomalous areas, including Elliott Dome, Mustang, Pony Spur, Appaloosa, Stallion, Palomino and Bowl. A few minor isolated gold anomalies are present. The gold results in soils range from less than detection (<1 part per billion (ppb) gold (Au)) to maximum values of 1.21 parts per million (ppm) (0.035 ounces per short ton (opt)) Au and 1.19 ppm (0.035 opt) Au at the Bowl Zone and Pony Spur, respectively. Strong correlations between Au and arsenic (As), thallium (TI), antimony (Sb), caesium (Cs) and tellurium (Te) were observed in many areas.

Geochemical rock sampling was completed over areas with anomalous Au-in-soil results. Most of the rock samples were collected in the northwestern portion of the Property. Significant results from the rock grab samples include 2.71 grams per tonne (g/t) (0.079 opt) Au, 0.58 g/t (0.017 opt) Au and 0.54 g/t (0.016 opt) Au from the Appaloosa Zone.

CSAMT geophysical surveys completed over the Pony Creek Property delineated structures, lithologies and alteration to assist in future drill targeting. The 2017 CSAMT survey produced 11 inverted resistivity sections and 8 target areas that aligned with known geological controls at the time and two potential mineralization trends. A CSAMT survey completed in 2018 produced 7 inverted sections that highlighted the extension of the Dark Star structural corridor and one potential area of alteration.

In addition to the surface exploration, Contact Gold has drilled 113 RC and 5 DDH, totalling 25,921 m (85,042.7 ft), at Pony Creek. Drilling conducted by Contact Gold at the Property from 2017 to 2019 focused on the Bowl Zone, with additional drilling completed at the Appaloosa and Stallion zones, and the Mustang and Pony Spur target areas. The objectives of Contact Gold's drill programs were to confirm the extents of known mineralization, validate historical drilling intercepts, expand areas of interest, understand the controls on mineralization and test new geophysical and geochemical targets within the Property. Contact Gold's drill programs identified five zones of oxide and transitional

gold mineralization at shallow depths primarily hosted within altered and silicified calcareous clastic rocks of the Penn-Perm Moleen Formation and at the Bowl Zone within or adjacent to a Tertiary (or Jurassic) rhyolite.

Select significant results from Contact Gold's recent (2017-2019) drill programs at the Bowl Zone include:

- 1.36 g/t (0.040 opt) Au over 43.74 m (143.5 ft) length from 116.89 m (383.5 ft) depth in drillhole PC17-24, including 3.35 g/t (0.098 opt) Au over 15.55 m (51 ft) length from 125.03 m (410.2 ft);
- 2.12 g/t (0.062 opt) Au over 22.86 m (75 ft) length from 64.01 m (210 ft) depth in drillhole PC17-040, including 4.53 g/t (0.132 opt) Au over 9.14 m (30 ft) length from 65.53 m (215 ft);
- 2.51 g/t (0.073 opt) Au over 47.24 m (155 ft) length from 86.87 m (285 ft) depth in drillhole PC18-03;
- 1.00 g/t (0.029 opt) Au over 92.97 m (305 ft) length from 50.29 m (165 ft) depth in drillhole PC18-04; and
- 2.42 g/t (0.071 opt) Au over 35.05 m (115 ft) length from 266.7 m (875 ft) depth in drillhole PC18-33, including 3.15 g/t (0.092 opt) Au over 24.38 m (80 ft) length from 274.23 m (899.7 ft) (Contact Gold Corp., 2020a).

Select significant results from Contact Gold's recent (2018-2019) drill programs at the Stallion Zone include:

- 0.42 g/t (0.012 opt) Au over 33.53 m (110 ft) length from 4.57 m (15 ft) depth in discovery hole PC18-018, including 1.11 g/t (0.032 opt) Au over 4.5 m (14.8 ft);
- 0.71 g/t (0.021 opt) Au over 10.67 m (35 ft) length from 19.81 m (65 ft) depth in hole PC18-022; and
- 0.33 g/t (0.010 opt) Au over 92.97 m (305 ft) length from surface in hole PC18-51, including 0.6 g/t (0.017 opt) Au over 13.7 m (44.9 ft) (Contact Gold Corp., 2020a).

Select significant results from Contact Gold's recent (2017-2019) drill programs at the Appaloosa Zone include:

0.84 g/t (0.024 opt) over 7.62 m (25 ft) length from 85.35 m (280.0 ft) depth in hole PC19-17, including 1.56 g/t (0.045 opt) Au over 3.05 m (10 ft) from 88.39 m (290 ft);

- 0.38 g/t (0.011 opt) Au over 28.96 m (95 ft) length from 83.82 m (275 ft) depth in hole PC19-16, including 2.19 g/t (0.064 opt) Au over 3.05 m (10 ft) from 89.92 m (295 ft); and
- 0.34 g/t (0.010 opt) Au over 44.20 m (145 ft) length from 25.91 m (85 ft) depth in hole PC17-21 (Contact Gold Corp., 2019b).

The true width of mineralized intercepts at Pony Creek is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

1.7 Metallurgical Testing by Contact Gold

In 2018 and 2020, Contact Gold conducted metallurgical testing on select samples from the 2017-2019 drill programs completed at the Bowl Zone and Stallion Zone.

In 2018, composite samples of pulp material from 2017-2018 drill samples were analysed using cyanidation bottle roll tests for gold. Gold recoveries on two oxide composites by Contact Gold were 85% for the rhyolite gold mineralization and 90% for the conglomerate composite of the weighted average of fire assays for the same composites, indicating that the oxidized portion of gold mineralization at Pony Creek's Bowl Zone is amenable to standard cyanidation processing. In addition, preg robbing analysis was completed on one sulphide interval from Contact Gold drillhole PC18-04. The initial results of the preg robbing analysis indicate that the sulphide material may not need to be segregated from the oxide material as waste and some gold may be recovered during potential future heap leach processing. The preg robbing values varied for 34 individual 1.524 m (5 ft) intervals from -3% to 69%.

In 2020, cyanidation bottle roll tests for gold were completed on four composite samples from the Bowl and Stallion zones. The cyanide bottle roll test recoveries range from 92 to 106% in the oxide zone at Bowl and Stallion and 15% in the non-oxide zone at the Bowl Zone.

1.8 Current Mineral Resource

This Technical Report details a NI 43-101 maiden mineral resource estimate (MRE) for Pony Creek's Bowl, Appaloosa and Stallion zones. The 2022 MRE for Pony Creek was completed by Mr. Tyler Acorn, M.Sc., Mr. Warren Black, M.Sc., P.Geo., of APEX Geoscience Ltd. under the direct supervision of Mr. Dufresne, M.Sc., P.Geol., P.Geo. and a QP who takes responsibility for the MRE contained herein. Mr. Steven Nicholls, BA.Sc., MAIG, a QP and APEX's senior resource geologist performed an internal audit of the MRE in Section 14.

The Pony Creek drillhole database contains a total of 373 drillholes with 45,600 sample intervals in a sample database with 45,592 samples assayed for gold. The Pony Creek Project MRE covers the 3 main mineralization zones, the Bowl, Appaloosa and

Stallion zones. Of the 373 drillholes, 211 intersected the estimation domains and were used in the MRE. The portion of the drillhole database used in the MRE consists of a total of 27,702 unique sample/interval entries (totalling 42,423 m) of which 5,361 sample/interval entries (totalling 8,111 m) are within the estimation domains and were used in the Mineral Resource Estimation. The current MRE utilized 211 drillholes with 111 historical holes completed by previous operators and 100 drillholes completed by Contact Gold. Statistical treatments were conducted on the raw and composite samples resulting in capping limits of 6.9 g/t (0.201 opt), 0.7 g/t (0.020 opt) and 1.9 g/t (0.055 opt) Au for the Bowl, Stallion and Appaloosa zones, respectively.

The MRE is based on the combination of geological modeling, geostatistics and conventional block modeling using Ordinary Kriging (OK) for gold grade interpolation. Modeling was conducted in the Universal Transverse Mercator (UTM) coordinate space relative to the North American Datum (NAD) 1983, Zone 11N (EPSG:26911). The mineralization domains utilized an approximate lower cut-off of 0.10 g/t Au for interpretation of mineralization shapes. The resource block model utilized a block size of 3 m (X) x 3 m (Y) x 3 m (Z) to honor the mineralization wireframes. The percentage of the volume of each block below the bare earth surface and within each mineralization domain was calculated using the three dimensional (3D) geological models and a 3D surface model. The MRE is undiluted and only utilizes the volume of each block within each mineralization domain.

The gold estimation was completed using OK and utilized 2,874 composited samples inside the interpreted mineralization wireframes. The search ellipsoid size used to estimate the gold grades was defined by the modelled variograms. Block grade estimation employed locally varying anisotropy (LVA), which uses different rotation angles to define the principal directions of the variogram model and search ellipsoid on a per-block basis. Blocks within the estimation domains are assigned rotation angles using a modelled 3D mineralization trend surface wireframe, which allows structural complexities to be reproduced in the estimated block model.

A total of 71 bulk density sample results were available and reviewed. Density was assigned on a block-by-block basis based on the majority lithological unit present based upon the bulk density sample results. At this point no distinction was made between mineralized or non-mineralized rock.

The Pony Creek MRE is classified according to the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019, and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10, 2014.

The maiden MRE for the Pony Creek Property is presented in Table 1.1 below.

Table 1.1. Pony Creek Mineral Resource Estimate

Zone	Cut-off Grade	Short Tons* (2,000 lbs)	Tonnes* (1000 kg)	Avg Grade (ozt/st)	Avg Grade (g/t)	Contained Ounces*	Class***
Bowl Zone	Mixed**	18,457,000	16,744,000	0.018	0.63	340,000	Inferred
Appaloosa	Mixed**	2,059,000	1,868,000	0.015	0.50	30,000	Inferred
Stallion	Mixed**	7,834,000	7,107,000	0.008	0.27	63,000	Inferred
TOTAL	Mixed**	28,350,000	25,719,000	0.015	0.52	433,000	Inferred

^{*}Tons. tonnes and ounces rounded to the neared 1,000, and may not add due to rounding.

1.9 Conclusions and Recommendations

Based upon a review of available information, historical and recent exploration data, the senior author's recent site visit and the maiden MRE for the Bowl, Appaloosa and Stallion zones of Pony Creek, the authors view the Pony Creek Property as a property of merit prospective for the discovery of potentially economic Carlin-type gold deposits. This contention is supported by:

- The favourable geological and structural setting of the Pony Creek Property and its position at the southern end of the Carlin Gold Trend and immediately to the south of GSV's Railroad-Pinion project, which contains the Dark Star, Pinion, North Bullion, POD and Jasperoid Wash Carlin-type sedimentary hosted gold deposits. Key regional host rocks include Penn-Perm clastic and carbonate rocks of the Strathearn and Moleen formations, the Mississippian Chainman Formation, as well as the Webb Formation and Devil's Gate Limestone.
- Historical drilling conducted by previous operators delineated a large zone of gold mineralization in the northern portion of the Property measuring approximately 3.9 km (2.4 miles) long by 610 m (2,000 ft) wide on the southern end to 1,463 m (4,800 ft) wide on the north end of the area of interest.
- The recent results of surface exploration and drill programs conducted by the Issuer has led to the identification of near surface oxidized gold mineralization at the Bowl, Appaloosa and Stallion zones and the calculation of the maiden MRE for the Property. Gold mineralization at the Bowl Zone remains open for expansion, particularly to the northwest. Gold mineralization at both the

^{**}Mixed lower cutoff grades are utilized depending upon recoveries for oxide, transitional and non-oxide material, using 0.15 g/t Au lower cutoff for oxide material and 0.22 g/t Au for transitional and non-oxidized material.

^{***}Inferred Mineral Resources are not Mineral Reserves. Mineral resources which are not mineral reserves do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no guarantee that any part of the mineral resources discussed herein will be converted into a mineral reserve in the future. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues. The mineral resources have been classified according to the Canadian Institute of Mining (CIM) Definition Standards for Mineral Resources and Mineral Reserves (May, 2014).and CIM Estimation of Mineral Resources & Mineral Reserves Best Practices Guidelines (2019).

^{****}The recommended reported resources have been constrained within a \$US1,600/ounce gold optimized pit shell.

Appaloosa and Stallion zones is open for expansion in all directions. The low drill density at the Appaloosa and Stallion zones provides excellent opportunity for potential expansion of the known oxide gold mineralization with in-fill and step-out drill programs. Several Au-in-soil anomalies at the Appaloosa Zone have yet to be drill tested.

- In addition, Contact Gold's recent work has highlighted new target areas, including Pony Spur, Palomino, Mustang and Elliott Dome.
 - O Pony Spur is situated along a northwest striking structural zone that projects into the Bowl Zone and into the major southeast flexure in the otherwise north-striking Emigrant/Dark Star/Pony Creek structural zone. All of Contact Gold's recent drilling at Pony Spur intersected low grade gold mineralization at the contact of the Devil's Gate/Webb Formation.
 - Palomino lies immediately to the northwest of the Bowl Zone and has been delineated by an Au-in-soil anomaly measuring 400 x 500 m (1,312 x 1,640 ft).
 - Mustang extends west-northwest from Appaloosa and north from the Stallion Zone. The Mustang Zone is defined by west-northwest trending structurally controlled gravity and Au-in-soil anomalies extending over a length of 2 km (1.2 miles). Mustang has yet to be drill tested.
 - Elliott Dome lies adjacent to GSV's Jasperoid Wash deposit (off-Property). It measures 500 x 1,000 m (1,640 x 3,280 ft) and is defined by north-south structurally controlled CSAMT and Au-in-soil anomalies cutting clastic and carbonate rocks. Elliott Dome has yet to be drill tested.
- In the southern Property area at the East Bailey target, historical CSAMT geophysical data and RC drilling data define a favourable structural setting where north-south structural features are intersected by northwesterly striking features and the prospective Devil's Gate/Webb Formation contact is at surface due to the structural movement of several apparent horst blocks.
- The recent metallurgical studies conducted on behalf of the Issuer indicate potential for high recovery and medium recovery material.
- The rock grab samples collected from the Stallion Zone by Mr. Dufresne during his 2022 Property visit contained low grade gold mineralization with 0.269 ppm (0.008 opt) Au in 22MDP003 and 0.167 ppm (0.005 opt) Au in 22MDP002, as well as elevated levels of pathfinder elements including silver (Ag), arsenic (As), barium (Ba), molybdenum (Mo), antimony (Sb) and zinc (Zn). The rock grab sample mineralization is consistent with the style and tenor of mineralization previously described on the Property at the Stallion Zone.

The authors recommend an aggressive exploration program for Pony Creek involving surface exploration, additional exploration drilling, resource expansion and infill drilling, as well as more advanced metallurgical test work (Table 1.2). A staged exploration approach is recommended by the authors, with Phase 2 exploration being dependent on the results of Phase 1.

With respect to surface exploration, Phase 1 should include continued fieldwork comprising geological mapping and geochemical sampling to refine the geological and structural model of the Property, assist in drill target delineation, and to expand and fill in gaps in the existing Pony Creek database. All new drill roads built to define and expand near, and at-surface, gold mineralization should be mapped in detail and all structural measurements exposed should be collected. Composite channel samples as well as spot samples on suspecting controlling structures should be collected. In addition, CSAMT geophysical surveying is recommended at East Bailey to extend and supplement the existing geophysical dataset and assist in drill target delineation.

Regarding drilling in Phase 1, additional step-out drilling is warranted at the Bowl Zone and additional in-fill and step-out drilling is warranted at the Appaloosa and Stallion zones. The authors recommend a significant program intended to a) drill test targets along strike and down dip for additional zones of mineralization and extensions to existing zones at Appaloosa, Bowl and Stallion; b) infill the current resource areas at Appaloosa and Stallion; and c) test new or previously undrilled targets with exploration drilling at the Mustang and Elliott Dome target areas. Furthermore, additional drilling for metallurgical sampling and testing is recommended to provide the data necessary for a thorough metallurgical characterization of each mineralized zone. Oriented core drilling using the Ace Core Tool, or similar method, should be employed on a reasonable spacing through the known resource areas and in exploration targets where more structural data is needed. Core holes that would provide potentially useful slope stability information should be logged using the Golder method.

The estimated cost of the Phase 1 program is US\$4,492,000, not including contingency funds or GST.

Phase 2 exploration is dependent on the results of Phase 1 and includes additional soil and rock sampling, RC and diamond drilling, and more advanced metallurgical test work (Table 1.2).

Collectively, the estimated cost of the recommended work programs for the Property is itemized below and totals US\$11,854,000, not including contingency funds or GST.

Table 1.2. Proposed budget for the recommended exploration programs at the Pony Creek Property. Currency is in US dollars.

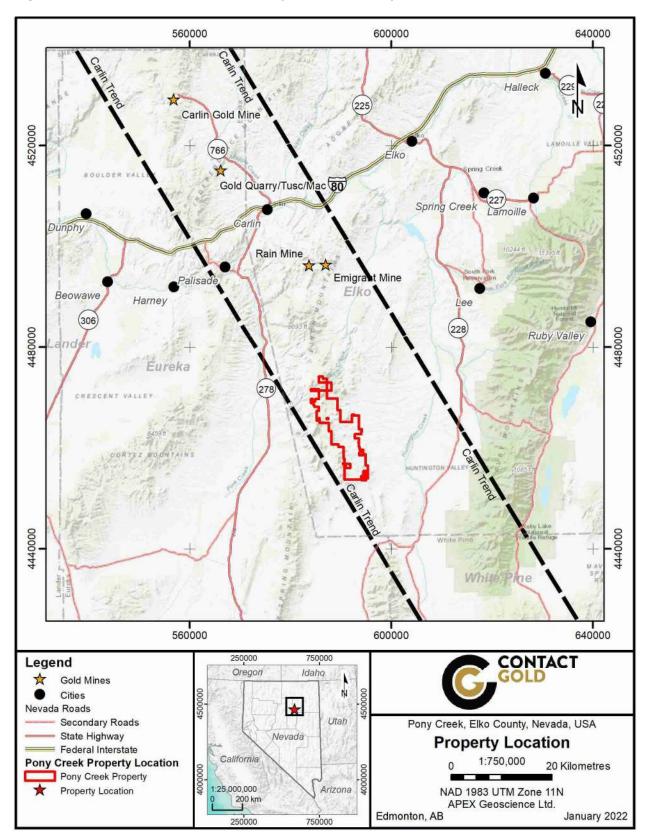
ltem	Phase 1	Phase 2
Geology: Soil and Rock Sampling	\$200,000	\$200,000
Geophysics	\$150,000	-
RC Drilling Program - Contractors	\$1,400,000	\$2,500,000
Core & Met Core Drilling Program - Contractors	\$1,400,000	\$2,500,000
Drilling Programs - Assaying	\$550,000	\$1,000,000
Drilling Programs - Personnel	\$200,000	\$400,000
Project Supervision	\$100,000	\$100,000
Land Holding	\$212,000	\$217,000
Permitting and Environmental	\$30,000	\$45,000
Geotechnical data collection	\$50,000	\$100,000
Metallurgy	\$200,000	\$300,000
Total	\$4,492,000	\$7,362,000

2 Introduction

2.1 Issuer and Purpose

This Technical Report (the Technical Report) has been prepared for the Issuer, Contact Gold Corp. (Contact Gold or the Company), a British Columbia (BC), Canada, based exploration company that is focused on producing district scale gold discoveries in Nevada (NV), USA.

Contact Gold was formed pursuant to a Reverse Takeover (RTO) transaction between Winwell Ventures Inc (Winwell) and Carlin Opportunities Inc. (Carlin) by way of a court-approved statutory plan of arrangement (the RTO Transaction) with a completion date of June 2017. Immediately thereafter, Winwell continued into the State of Nevada and changed its name to Contact Gold. Contact Gold then acquired Clover Nevada II LLC (Clover Nevada) from a subsidiary of Waterton Precious Metals Fund II Cayman, LP (Waterton). Clover Nevada holds the Pony Creek Property (Pony Creek or the Property), along with several other exploration stage properties in Nevada. Upon closing of the transaction in June 2017, Waterton received CDN\$7 million in cash, a 37 per cent (%) common share ownership position in Contact Gold, and Contact Gold preferred shares with a face value of CDN\$15 million.


In 2021, Contact Gold redomiciled its incorporation from the State of Nevada to the Province of British Columbia as part of an internal reorganization

Pony Creek is an early-stage exploration project with a favourable geological, structural and stratigraphic setting situated at the southeast end of the Carlin Trend. The Carlin Trend is a northwest alignment of gold deposits that represents one of the highest concentrations of gold globally in relation to its area. The Carlin Trend has produced more than 83 million ounces of gold and contains significant remaining resources and reserves as of December 2014 (Rhys et al., 2015). The Property is located 45 kilometres (km) (28 miles) to the southeast of the town of Carlin, NV, and comprises 1,032 contiguous mineral claims covering an area of 8,177 hectares (20,205.8 acres). The location of the Property is illustrated in Figure 2.1.

This Technical Report summarizes a National Instrument 43-101 Standards of Disclosure for Mineral Projects (NI 43-101) mineral resource estimation for the Pony Creek Property and provides a technical summary of the relevant location, tenure, historical and geological information, a summary of the recent exploration work and recommendations for future exploration programs. This Technical Report summarizes the technical information available up to the effective date of February 24th, 2022.

This Technical Report has been prepared in accordance with the Canadian Securities Administration's (CSA) NI 43-101 and guidelines for technical reporting Canadian Institute of Mining, Metallurgy and Petroleum (CIM) "Best Practices and Reporting Guidelines" for disclosing mineral exploration. The mineral resource has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated

Figure 2.1. General location of the Pony Creek Property.

November 29, 2019, and the CIM "Definition Standards for Mineral Resources and Mineral Reserves" amended and adopted May 10th, 2014.

2.2 Authors, Contributors and Site Inspection

The authors of this Technical Report are Mr. Michael B. Dufresne, M.Sc., P. Geol., P. Geo., of APEX Geoscience Ltd. (APEX), and Ms. Fallon T. Clarke, B.Sc., P.Geo., of APEX. The authors are fully independent of Contact Gold and are Qualified Persons (QPs) as defined in NI 43-101. The CIM defines a QP as "an individual who is a geoscientist with at least five years of experience in mineral exploration, mine development or operation or mineral project assessment, or any combination of these; has experience relevant to the subject matter of the mineral project and the technical report; and is a member or licensee in good standing of a professional association."

Mr. Dufresne takes responsibility for the preparation and publication of all sections of this Technical Report. Mr. Dufresne is a Professional Geologist with the Association of Professional Engineers and Geoscientists of Alberta (APEGA; membership number 48439), a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia (EGBC; membership number 37074) and has worked as a mineral exploration geologist for more than 35 years since his graduation from university. Mr. Dufresne has been involved in all aspects of mineral exploration and mineral resource estimations for precious and base metal mineral projects and deposits in Canada and internationally, including sediment-hosted gold mineralization in Nevada.

Ms. Clarke is a Professional Geologist with the Association of Professional Engineers and Geoscientists of Saskatchewan (APEGS; membership number 27238) and has worked as a geologist for more than ten years since her graduation from the University of Saskatchewan. Ms. Clarke has experience with exploration for precious and base metal deposits of various deposit types in North America, including sediment-hosted gold mineralization in Nevada. Under the direct guidance of Mr. Dufresne, Ms. Clarke contributed to Sections 1 to 13 and 23 to 28 of this Technical Report.

Contributors to this Technical Report include Mr. Tyler Acorn, M.Sc., Mr. Warren Black, M.Sc., P.Geo. and Mr. Steven Nicholls, BA.Sc., MAIG, all of APEX. Under the direct supervision of Mr. Dufresne, Mr. Acorn and Mr. Black prepared the resource estimation statistical analysis, three-dimensional modelling, block modelling and resource estimations presented in Section 14. Mr. Acorn has a research background interest in the use of managing the uncertainty in resource models and has experience as a mine planning engineer and resource modelling for precious metal deposits of various deposit types in North America. Mr. Black has a research background interest in the use of multivariate simulation for probabilistic mineral prospectivity modelling and has experience with exploration for precious and base metal deposits of various deposit types in North America. Mr. Steven Nicholls, BA.Sc., MAIG, QP, conducted a thorough audit of of the Mineral Resource Estimate (MRE) and Section 14. Mr. Nicholls is a QP, as defined in NI 43-101, and has worked as a geologist for more than 20 years since his graduation from university. Mr. Nicholls is APEX's senior resource geologist and has extensive

experience with exploration/resource estimation for, and the evaluation of, gold deposits of various types, including sediment-hosted mineralization.

Mr. Dufresne conducted a site inspection of the Pony Creek Property for data verification purposes on January 26-27, 2022. During the site visit, Mr. Dufresne verified the geology of the Property, examined drill core and RC chip trays, collected pulp and composite rock grab verification samples and verified recent Contact Gold drillhole collar locations.

Mr. Dufresne visited the East Bailey area in the southern part of the Property on April 23, 2014, when it was held by its former operator, Gold Standard Ventures Corp. (GSV). The property verification inspection was completed as part of Mr. Dufresne's role as coauthor of the 2014 NI 43-101 technical report for GSV's East Bailey property (Dufresne and Schoeman, 2014). With the exception of being the senior author of this Technical Report, Mr. Dufresne has had no involvement with the Property since the site visit in 2014.

Mr. Dufresne has co-authored several independent NI 43-101 technical reports (Dufresne et al., 2014; 2015; 2017; Dufresne and Koehler, 2016; Dufresne and Nicholls, 2016; 2017; Ibrado et al., 2020) for GSV's Railroad-Pinion properties situated immediately to the north of the Pony Creek Property. Mr. Dufresne participated in a recent Pre-Feasibility Study (PFS) for the South Railroad Property, which is the central portion of the Railroad-Pinion project and includes the Dark Star and Pinion deposits (Ibrado et al., 2020); however, he has not been directly involved in technical work for the Railroad-Pinion properties since 2017. The PFS has since been superseded by a recently completed Feasibility Study (FS) completed for GSV (GSV News Release February 23rd, 2022). Mr. Dufresne did not participate in the FS.

2.3 Sources of Information

The authors, in writing this Technical Report, used sources of information as listed in Section 27, References. The sources of information and data used in this Technical Report are based on the compilation of proprietary and publicly available geological and geochemical data.

Historical information and data including surface sampling data, drilling data, assay analytical results and metallurgical testwork information were provided by Contact Gold to the authors as predominately excel and PDF electronic files.

A large portion of Section 6, the Pony Creek Property history, has been sourced from information provided in previous technical reports on the Property by Russell (2004; 2006), Dufresne and Schoeman (2014), Gustin (2017) and Spalding (2018). In referencing work completed by previous explorers, the QPs have assessed that such historical work appears to have been completed in a manner consistent with normal exploration practices (at that time) and is suitable for use in this Technical Report.

The regional geological information in the following section is largely derived from previous technical reports in the area by Abbott (2003), Russell (2004; 2006), Hunsaker (2010; 2012a, b), Shaddrick (2012), Koehler et al. (2014), Dufresne and Nicholls (2017), Gustin (2017) and Spalding (2018), and references therein. Information on the Property scale geology and mineralization is sourced from previous technical reports and studies on the Property by Jones and Postlethwaite (1993), Russell (1999), Abbott (2003), Russell (2006), Dufresne and Schoeman (2014), Gustin (2017) and Spalding (2018), and references therein. Information on the types of deposits being explored for at the Cebolleta Property has been sourced and compiled from Arehart (1996), Tosdal (1999), Cline et al. (2005), Muntean et al. (2011), Dufresne and Nicholls (2017) and Spalding (2018).

The technical reports were prepared by QPs and the journal papers were prepared by a person, or persons, holding post-secondary geology or related degrees. The authors of this Technical Report have reviewed these sources and consider them to contain all the relevant geological information regarding the Pony Creek Property area and relevant information regarding the deposit types being explored for at the Property.

Based on the authors' review of these documents and/or information, the authors have deemed that these reports and information, to the best of their knowledge, are valid contributions to this Technical Report, and therefore take ownership of the ideas as they pertain to this Technical Report.

2.4 Units of Measure

With respect to units of measure, unless otherwise stated, this Technical Report uses:

- Abbreviated shorthand consistent with the International System of Units (International Bureau of Weights and Measures, 2006).
- 'Bulk' weight is presented in both United States short tons ("tons"; 2,000 lbs or 907.2 kg) and metric tonnes ("tonnes"; 1,000 kg or 2,204.6 lbs.).
- Assay and analytical results for precious metals are quoted in parts per million ("ppm"), parts per billion ("ppb"), ounces per short ton ("opt" or ozt/st), where "ounces" refers to "troy ounces" and "ton" means "short ton". Where ppm (also commonly referred to as grams per metric tonne [g/t]) have been converted to opt (or ozt/st), a conversion factor of 0.029166 (or 34.2857) was used.
- Quality assurance and quality control plots (ndata: Number of data; my: Mean of y-axis data; mx: Mean of x-axis data; sy: Standard deviation of y-axis data; sx: Standard deviation of x-axis data; cov: Covariance; r: Pearson correlation coefficient; MSE: Mean Squared Error; SoR: Slope of Regression).
- Geographic coordinates are projected in the Universal Transverse Mercator ("UTM") system relative to Zone 11 of the North American Datum ("NAD") 1983.

Currency in Canadian dollars (CDN\$), unless otherwise specified (e.g., US dollars, US\$).

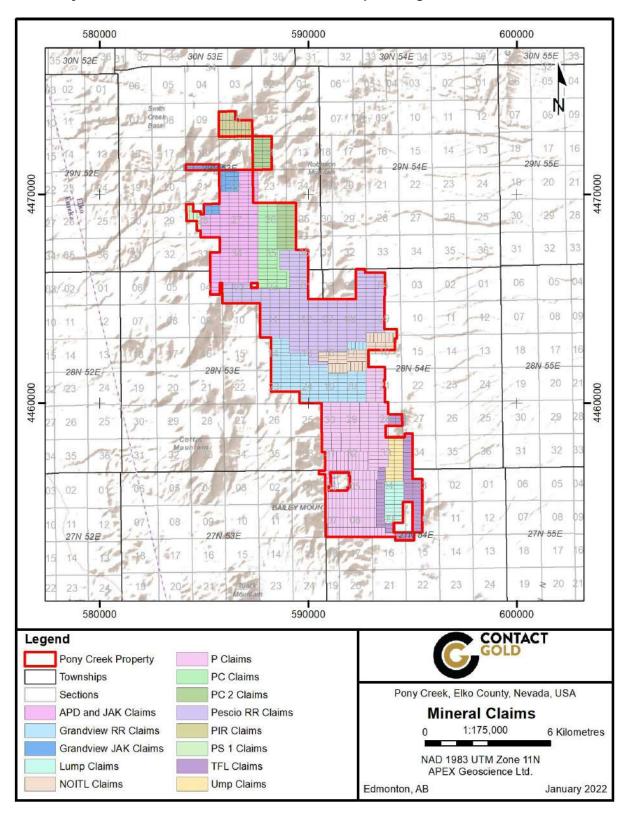
3 Reliance of Other Experts

This Technical Report was prepared by the authors for Contact Gold. The authors are not qualified to provide an opinion or comment on issues related to legal, political, environmental or tax matters relevant to the Technical Report, and have relied upon representatives and information provide by Contact Gold. In particular, the authors have relied upon:

- Background information on the ownership, claim names and date of location, and details on the maintenance fee filing for the mining claims (in Section 4.1) was provided by Contact Gold to the authors in an affidavit titled Mining Claim Maintenance Fee Filing and Affidavit and Notice of Intent to Hold Mining Claims by Neil Whitmer of Clover Nevada II LLC dated August 2021. The affidavit was provided to the authors by Contact Gold's management team on November 12, 2021.
- Details regarding the nature and extent of the royalties and agreements (in Section 4.2) were provided to the authors by Contact Gold's management team on January 18, 2022, in the following documents:
 - Exploration Lease and Option to Purchase Agreement between Donald K. Jennings and Thorsen-Fordyce Merchant Capital dated September 14, 2015.
 - Securities Exchange Agreement (for the Carlin Trend Properties that includes the Pony Creek Property) between Waterton Nevada Splitter LLC, Clover Nevada II LLC, Carlin Opportunities Inc. and Winwell Ventures Inc., dated December 8, 2016.
 - Amendment to the Securities and Exchange Agreement between Winwell Ventures Inc., Carlin Opportunities Inc., Waterton Nevada Splitter LLC, and Clover Nevada II LLC, dated January 31, 2017.
 - Asset Purchase Agreement (for the Pony Spur claims) between Richard R. Redfern and Joy A. Perry-Redfern d/b/a RMIC Gold, Clover Nevada II LLC and Contact Gold Corp., dated September 8, 2017.
 - Asset Purchase Agreement (for the TFL and Jennings Claims) between Thorsen-Fordyce Merchant Capital Inc., TF Minerals (USA) Inc., Clover Nevada II LLC and Contact Gold Corp., dated February 6, 2018, and the Exploration Lease and Option to Purchase Agreement between Donald

- K. Jennings and Thorsen-Fordyce Merchant Capital Inc. dated September 14, 2005.
- The Royalty Deed from Clover Nevada II LLC to TF Minerals (USA) Inc. dated February 9, 2018.

4 Property Description and Location


4.1 Description and Location

Pony Creek lies in the Piñon Mountain range in the Railroad Mining District at the southeast end of the Carlin Trend. The Property consists of a land position totalling 8,177 hectares (20,205.8 acres) in Elko County, Nevada. The Property is located within section 1 in Township 27N, Range 53E; sections 3-10, 15-16 in Township 27N, Range 54E; sections 1-4, 11-14, 23-25, 36 in Township 28N, Range 53E; sections 4-9, 16-21, 28-34 in Township 28N, Range 54E; sections 10, 14, 16, 20-22, 25-28, 33-36 in Township 29N, Range 53E; Mount Diablo Base and Meridian. The approximate centre of the Property is in Universal Transverse Mercator (UTM) coordinates 590,415 m Easting and 4,462,475 m Northing, Zone 11, North American Datum 83 (NAD83).

The Property comprises 1,032 unpatented lode claims that are owned, leased, or otherwise controlled by Clover Nevada II LLC (as shown in Figure 4.1 with a detailed claim list provided in Appendix 1). Ownership of the unpatented mining claims is in the name of the holder (locator), subject to the paramount title of the United States of America (USA), under the administration of the U.S. Bureau of Land Management (BLM). Under the *General Mining Act of 1872*, which governs the location of unpatented mining claims on federal lands in the United States, the locator has the right to explore, develop and mine minerals on unpatented mining claims without payments of production royalties to the U.S. government, subject to the surface management regulation of the BLM. The claims continue to be held by payment of annual rental fees of US\$165 per claim to the BLM before September 1 of each year and by filing of a Notice of Intent to Hold Mining Claims with Elko County, at a cost of US\$12.00 per claim. Annual claim maintenance fees for the unpatented claims of the Property have been paid in full for the assessment year ending September 1, 2022.

Each unpatented lode claim is up to 457.2 m (1,500 ft) long and 182.9 m (600 ft) wide with four corner posts and one location moment. All of the claims were located by 5.08 cm² marked wooden posts, approximately 1.37 m (4.5 ft) high (Russell, 2006). The claims have not been legally surveyed.

Figure 4.1. Unpatented lode claims (n= 1,032 claims) of Pony Creek. The mineral claims that extend outside of the Property boundary are invalid for the portion that exceeds the boundary due to the existence of senior claims or private ground.

4.2 Agreements and Royalties

Winwell, Carlin, Waterton Nevada Splitter LLC (then, the sole member of Clover Nevada II LLC) and Clover Nevada entered into the Securities Exchange Agreement dated December 8, 2016, as amended on January 31, 2017 (the Securities Exchange Agreement). Following the completion of the Securities Exchange Agreement in June 2017, and concurrently with closing of the Reverse Takeover (RTO) of Winwell by Carlin to form Contact Gold and its continuance into the State of Nevada, Contact Gold (the Resulting Issuer), immediately acquired all of the issued and outstanding membership interests of Clover Nevada, which is the holder of Pony Creek and several other exploration properties, in exchange for the issuance of Contact Gold common shares representing 37% common share ownership, Contact Gold Preferred Shares with a face value of CDN\$15,000,000, and a cash payment of CDN\$7,000,000.

On September 8, 2017, Contact Gold and Clover Nevada entered into an Asset Purchase Agreement with Richard R. Redfern and Joy A. Perry-Redfern, individually, and d/b/a RMIC GOLD, of Elko, NV, to purchase claims PS 1 to PS 7 (the Pony Spur Claims) and all data, information and other assets and properties associated with the Pony Spur claims. The agreement also included claims PF 1 to PF 10 (the Poker Flat Claims), which are separate from Pony Creek. On the closing date of the agreement, Contact Gold issued 75,000 Contact Gold common shares valued at CDN\$52,250 and a cash payment of CDN\$66,397 for the Pony Spur Claims, which included a reimbursement to the vendors of BLM fees for that period.

On February 6, 2018, Contact Gold and Clover Nevada entered into an Asset Purchase Agreement with Thorsen-Fordyce Merchant Capital Inc. and TF Minerals (USA) Inc. (TF Minerals) for the purchase of 61 claims (the TFL Claims) and assignment of an option agreement with Donald K. Jennings for 48 Ump, Lump and Bailey claims (the Jennings Claims). At the time of Contact Gold's acquisition of the Jennings Claims, TF Minerals had already satisfied the option agreement/earn-in conditions. In consideration of the agreement, Contact Gold issued 250,000 common shares valued at CDN\$112,500 at the agreement date and granted a 2% Net Smelter Returns (NSR) royalty on all minerals from the TF Claims. The option agreement includes advanced royalty payments due annually to Donald K. Jennings (see Table 4.1) at 3% NSR on all minerals from the Jennings Claims, and an option to purchase the Jennings Claims for US\$1,000,000. The NSR may be reduced at any time by up to 2% at a price of US\$1,000,000 per 1% increment, prior to September 2030. The next payment of US\$30,000 is due in September 2022 (Table 4.1).

Table 4.1. Schedule of advance royalty payments for the Jennings Claims (in US dollars).

First Year	\$ nil
Second Year	\$ nil
Third Year	\$5,000
Fourth Year	\$10,000
Fifth Year	\$15,000
Sixth Year	\$20,000
Seventh Year	\$25,000
Eighth Year	\$30,000
Ninth Year	\$35,000
Tenth Year	\$40,000
Eleventh Year	\$45,000
Subsequent Years	\$50,000

The Pony Creek Claims are subject to a royalty of 3.0% NSR royalty from any and all production and sale of minerals from Pony Creek. On February 8, 2017, Clover Nevada granted certain royalties to its affiliate, Royalty Consolidation Company LLC (RCC). Clover Nevada had the option to permanently reduce the royalty rate from 3.0% to 2.0% in exchange for the payment to RCC of US\$1,500,000. This royalty reduction option expired on February 7, 2020.

Mineral production from the Pony Creek claims would be subject to the Nevada net proceeds tax (NPT). For operations with annual gross proceeds over US\$4,000,000, the NPT rate is 5%. For operations with gross proceeds less than US\$4,000,000 annually, the NPT tax rate is dependent on the ratio of net proceeds to gross proceeds.

4.3 Environmental Liabilities, Permitting and Significant Factors

A Plan of Operations (PoO) permit for Pony Creek was approved in June 2020 (Contact Gold, 2020a). The approved PoO covers 2,131.5 ha (5,267 acres) of land in Sections 10, 14, 16, 22, 26-28, 33-35, Township 29 North, Range 53 East and Sections 2-4, 11, Township 28 North, Range 53 East, Mount Diablo Base and Meridian (Figure 4.2). Within the Plan of Operations area, exploration related surface disturbance that includes the construction of access roads, drill sites and pumps, and geotechnical test pits and trenching, can be conducted in a multi-phase exploration program. Phase I includes up to 13 ha (32.2 acres) and 5 ha (12.5 acres) of acknowledged notice-level surface disturbance for a total of 18.1 ha (44.7 acres). Subsequent phases include up to 42.6 ha (105.3 acres) (EM Strategies, 2019).

582500 585000 587500 590000 592500 N 29N 54E 4470000 4467500 4467500 4465000 28N 54E 590000 585000 587500 592500 582500 CONTACT Legend Pony Creek Property Moleen Project Notice Area Plan of Operations Pony Creek, Elko County, Nevada, USA -- Pony Creek Project -- Notice Area PoO and BLM Notice Areas Townships Willow Project Notice Sections 3 Kilometres 1:75,000 NAD 1983 UTM Zone 11N APEX Geoscience Ltd. January 2022 Edmonton, AB

Figure 4.2. Property map showing Plan of Operations permit boundary and BLM Notice areas.

Contact Gold has six approved BLM Notices (NVN-95621, Pony Creek Project NOI; NVN-95913, Moleen Project NOI; NVN-95914, Red Rock Project NOI; NVN-95921, Intrusive Project NOI; NVN-95922, Bailey Project NOI; and NVN-96895, Willow Project NOI) with a total planned disturbance of approximately 5.1 ha (12.55 acres). The current bond amounts for these plans and notices are in US dollars \$25,994, \$25,573, \$11,653, \$11,418, \$11,351 and \$17,776, respectively.

The authors are not aware of any environmental liabilities to which the Property is subject. There are no other significant factors or risks that the authors are aware of that would affect access, title or the ability to perform work on the Property.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Accessibility

The Property is located in north-central Nevada, approximately 35 km (21.8 miles) southeast of Carlin, NV, and 51 km (31.7 miles) southwest of Elko, NV. From Elko, access to the Property is provided by traveling southeast on State Highway NV-227 E for 9 km (5.6 miles) and then south along State Highway NV-228 S for 53.3 km (33.1 miles) past the town of Jiggs, Nevada, to the intersection with the Red Rock Ranch gravel county road. Travel west along the Red Rock Ranch gravel road for approximately 4.8 km (3 miles), continue south for 4.5 km (2.8 miles) and follow the gravel road in a westward direction for 17.9 km (11.1 miles) to the eastern edge of the Property. From this location, several unmaintained two-track roads transect the Property and provide access to the northern and southern portions of the Property.

Alternately, the Property can be accessed from Carlin, NV, by travelling south along State Highway NV-278 S for 45 km (28 miles) and 0.3 km (0.2 miles) along an unnamed gravel road to Indian Pony Road. Indian Pony Road provides access to the western edge of the Property.

5.2 Site Topography, Elevation and Vegetation

Northern Nevada lies within the Basin and Range physiographic province, an area characterized by flat, lacustrine-gravel-volcaniclastic-volcanic filled valleys bounded by generally north-south trending mountain ranges. The Property is situated within the Piñon Range; elevations along the crest of the range measure 2,000 to 2,400 m (6,561 to 7,874 ft) above sea level (asl) within the Bailey Mountain and Robinson Mountain U.S.G.S. 7.5-minute topographic quadrangles. Lower elevations are typified by gentle, rolling hills with little to no bedrock exposure. Higher elevations are characterized by steeper slopes and cliffs, deeply incised drainages, and an increase in bedrock exposure.

Vegetation is consistent with a high desert climate and consists of sagebrush, rabbitbrush, cactus and bunch grass. Cottonwood trees are confined to drainage bottoms and near springs. Pinyon pine, juniper and mountain mahogany grow at higher elevations.

5.3 Climate

The Property area has a relatively dry "high desert" climate. Weather records from Newmont's Carlin Mine indicate that from 1966 through 2002, the average January maximum and minimum temperatures were 1.3° and -6.9 degrees Celsius (°C) (34.4° and 19.6 degrees Fahrenheit (°F)), respectively. July average maximum and minimum temperatures were 28.4° and 14.6°C (83.1° and 58.2°F), respectively. January and July had average precipitation amounts of 2.9 cm and 1.0 cm (1.13 inches and 0.41 inches), respectively, while average total precipitation was 30.7 cm (12.09 inches) (Western Regional Climate Center, 2011). Average annual snowfall for Carlin is approximately 76.2 cm (30 inches). Precipitation and temperature vary dramatically with changes in elevation and season.

Rainfall in the region is generally light, infrequent and may be associated with dry lightning between May and October. Moist airflow from the south brings 'monsoon' rains from July through September. A small number of these storms can carry heavy rains that cause localized flooding in creeks and drainages. Winter snow and spring runoff may temporarily limit access with respect to drilling and other geological fieldwork activities between November and April each year but are not considered to be significant issues. Exploration and mining activities are expected to run year-round.

5.4 Local Resources and Infrastructure

Elko, NV, has served as the northern Nevada exploration and mining centre for more than half a century. Elko is a full-service community that includes housing, motels, food and restaurants, medical clinics and a hospital, a regional airport with daily flights to and from Salt Lake City, Utah, interstate highway and railway access, local, state and federal government offices, skilled and experienced labor for the exploration and mining industry and schools (K-12 and a community college). In this part of Nevada, there is a diverse selection of local/regional/international exploration and mining service companies including assay labs, suppliers, drilling contractors and heavy equipment vendors supporting the exploration and mining industry.

The Property is located in the vicinity of large, active open pit and underground mines operated by Newmont and Barrick Gold Corp. along the 'Carlin Trend'. These mine sites also include fully operational mill complexes designed to treat oxide and/or carbon-sulphide refractory gold ores.

There is no electrical power available at the Property; however, ranch power is available a few miles from the Property. Year-round surface water is not available at the Property and most springs in the area dry up in the late summer months. In addition, minimal ground water has been encountered in airlift testing of Contact Gold's reverse circulation drillholes to date. Small volumes of ground water have been encountered in a few drillholes, but not enough to stop the pneumatic hammer from functioning. Spalding (2018) suggests that the drilled area appears to be mostly dewatered, as is the case at the Bald Mountain mine located approximately 38 km (23.6 miles) to the southeast. Large

water volumes were encountered in one of the holes drilled near the Red Rock Ranch by Grandview Gold Inc. in the lower elevations on the east side of the Property (Russell, 2006). This area may prove suitable for a production well if the water rights can be secured; however, Contact Gold has yet to drill test this area.

In the opinion of the authors, the Property is of sufficient size to accommodate potential exploration and mining facilities, including waste rock disposal and processing infrastructure. There are no other significant factors or risks that the authors are aware of that would affect access or the ability to perform work on the Property.

6 History

Pony Creek lies in the Railroad Mining District, along the southern end of the Carlin Gold Trend, a northwest-southeast alignment of sedimentary rock-hosted gold deposits in northern Nevada. The Carlin Trend represents one of the highest concentrations of gold globally in relation to its area, has produced more than 83 million ounces of gold and contains significant remaining reserves as of December 2014 (Rhys et al., 2015).

Exploration and mining activity in the Railroad Mining District dates to the late 1860's. Silver, gold, copper, lead and zinc mineralization were discovered in the central Piñon Range in 1869, approximately 22.5 km (14 miles) north of Pony Creek (LaPointe et al, 1991). Early production in the district occurred in the 1870's and 1880's and focused on silver, lead and copper from numerous underground mines on the northern flank of Bunker Hill. The district was revived in 1905, and there was intermittent production through to the early 1940's (Smith, 1976; LaPointe et al., 1991). Smith (1976) references a minor amount of copper and silver production from the Copper Creek Mine, hosted in Silurian to Upper Devonian limestones, and located off-Property, approximately 3.5 km to the southwest of the Bowl Zone (Figure 6.1). In the southern Piñon Range, the Larrabee mining district was organized and covered two areas of shallow workings and prospects where small, but unrecorded, amounts of silver and copper may have been produced, as well as less than 1,000 tons of barite (LaPointe et al., 1991).

6.1 Regional Exploration of the Property Area

The United States Geological Survey (USGS) regional gravity data (6 km (3.8 mile) grid) and regional aeromagnetic data for the Property area is presented in Figures 6.1 and 6.2, respectively.

The Piñon Range exhibits a clear asymmetrical basement distribution indicated by the gravity, as well as mapped basement geology (Wright, 2006a). To the west of the range, beneath Pine Valley, basement rocks are sharply dropped, while to the east, a slope indicates a complex collage of faults juxtaposing basement blocks. The eastern slope consists of basement lithologies of different compositions exposed through small windows in Tertiary volcanics. The siliciclastic and carbonate rocks of the basement are denser

Figure 6.1. Gold deposits, mineralized zones and Carlin mineral trend with USGS Regional Bouguer Gravity Data.

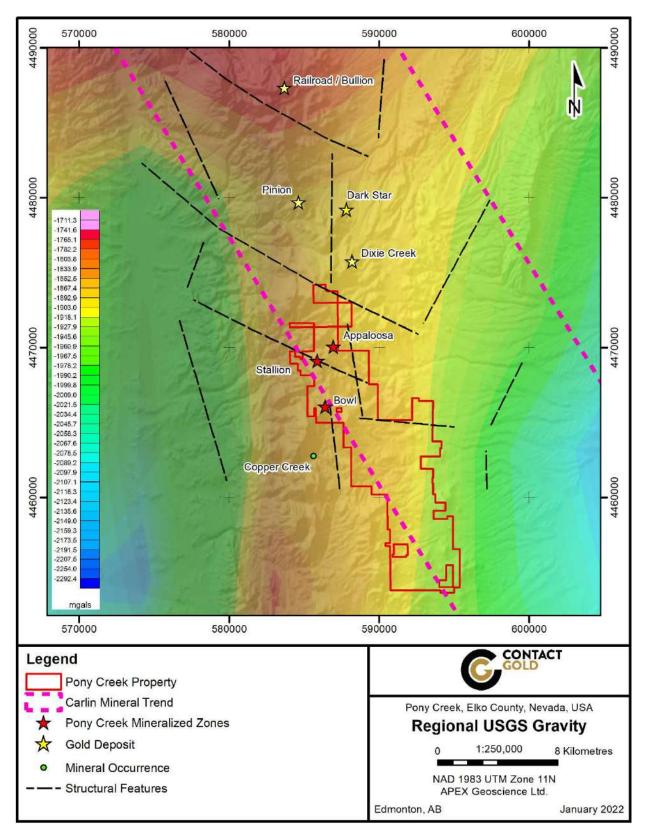
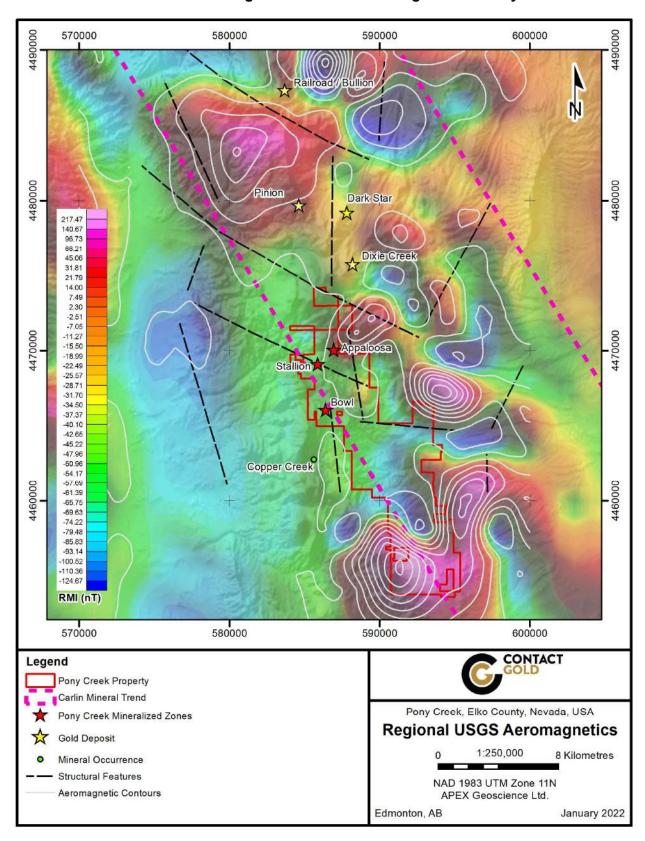



Figure 6.2. Gold deposits, mineralized zones, Carlin mineral trend and interpreted structural features with USGS Regional Residual Aeromagnetic Intensity Data.

than the basin fill material or the volcanic rocks and therefore show up as positive gravity anomalies (Dufresne and Schoeman, 2014). Wright (2006a) concludes that the basement geometry of the study area is effectively mapped by gravity highs. The regional gravity data in Figure 6.1 suggests that the northern tip of the Property hosting the Elliott Dome prospect lies at a structural intersection between the Emigrant Springs Fault corridor and a Rain Fault parallel northwest structure (Spalding, 2018).

Figure 6.2 illustrates the USGS regional aeromagnetic data for the Pony Creek Property area. The aeromagnetic data delineates an interpreted buried intrusion of interest situated approximately 4 miles (6.4 km) east of the Bowl Zone resource area (Russell, 2006).

6.2 Property Scale Exploration

The first record of modern exploration conducted at the Pony Creek Property dates to 1980, with a regional stream sediment sampling program conducted by Newmont Corporation (Newmont). The stream sediment sampling program identified anomalous gold and arsenic in exposures of hydrothermally altered rhyolite within the Pony Creek Property (Spalding, 2018). Following this, several historical exploration programs have been conducted at the Property by numerous companies, including Newmont (1980-1985, 1987-1989, 1997-1998), NERCO (1987), US Borax Exploration (US Borax) (1988-1989), Westmont Mining Inc. (Westmont) - Newmont Joint Venture (1990-1992), Ramrod Gold Inc. (1993), Uranerz U.S.A. Inc. (Uranerz) (1994-1995), Quest International Management Services Inc. (Quest) (1996-1997), Barrick Gold Exploration Inc. (Barrick) - Quest Joint Venture (1997-1998), Homestake Mining Company (Homestake) (1999-2000), Nevada Contact Inc. (2001-2003), Mill City International Corp. (Mill City) (2003), Grandview Gold Inc. (Grandview) (2004-2007), Consolidated Global Minerals (2006), AmMex Gold Mining Corp. (AmMex) (2007), Gold Run Inc. (Gold Run) (2007) and GSV (2008-2014).

Previous operators completed geological mapping, rock and soil geochemical sampling programs, geophysical surveying and drill programs at Pony Creek. The authors reviewed a database containing a total of 298 historical rock grab samples and 3,087 historical soil samples that were collected in the current Pony Creek Property boundary. Geochemical results of the historical surface exploration programs contained in Contact Gold's database are illustrated in Figures 6.3 and 6.4. Historical drill collar locations are presented in Figure 6.5. Historical drilling programs are mentioned briefly in Section 6.2.1 with a full summary and drill results provided in Section 6.2.2.

The following information summarizing the historical ownership and exploration history of the Property has been sourced from previous technical reports and studies on the Property by Russell (2004; 2006), Gustin (2017) and Spalding (2018), with additional information on the East Bailey area of Pony Creek added from Dufresne and Schoeman (2014).

Figure 6.3. Historical rock geochemistry (Au) contained within Contact Gold's database.

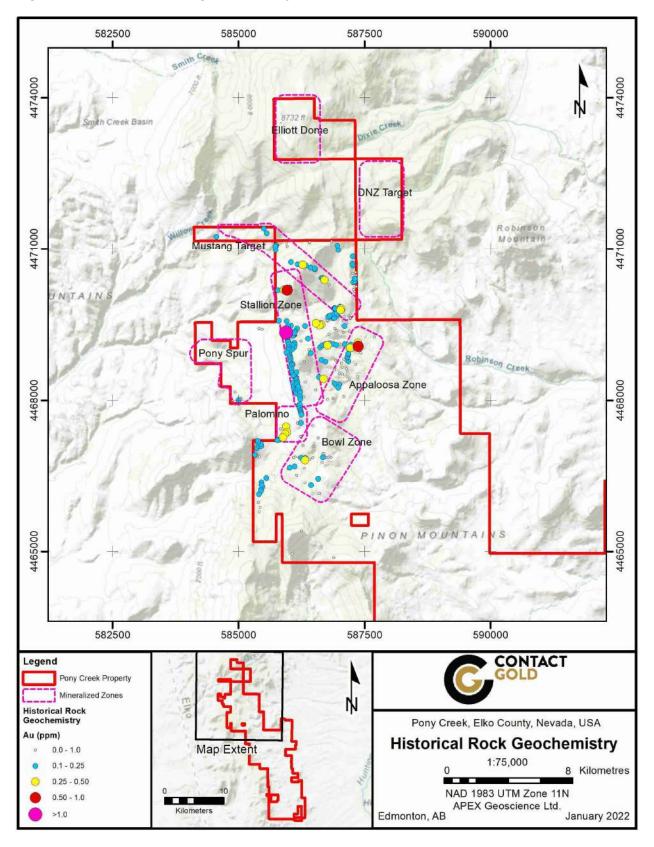


Figure 6.4. Historical soil geochemistry (Au) contained within Contact Gold's database.

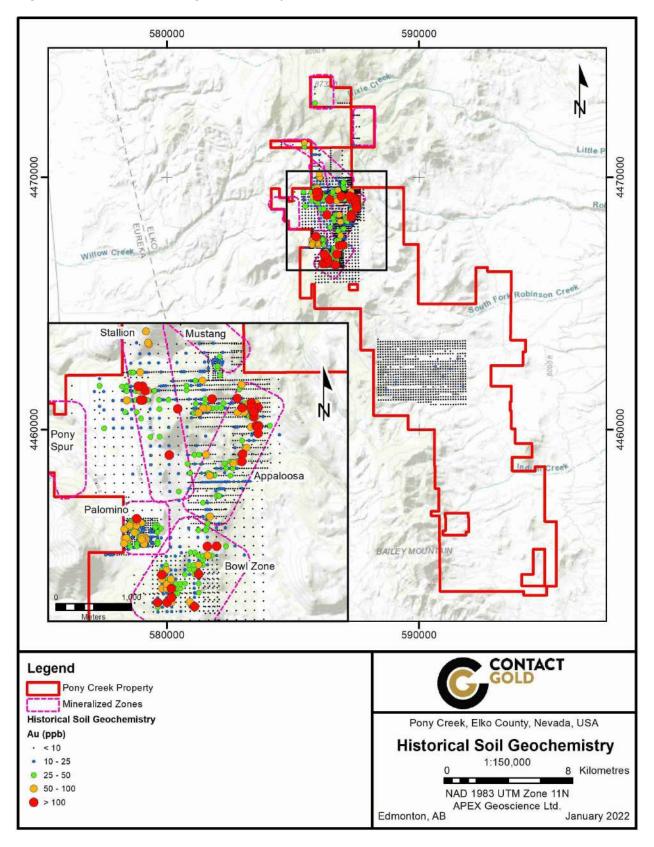
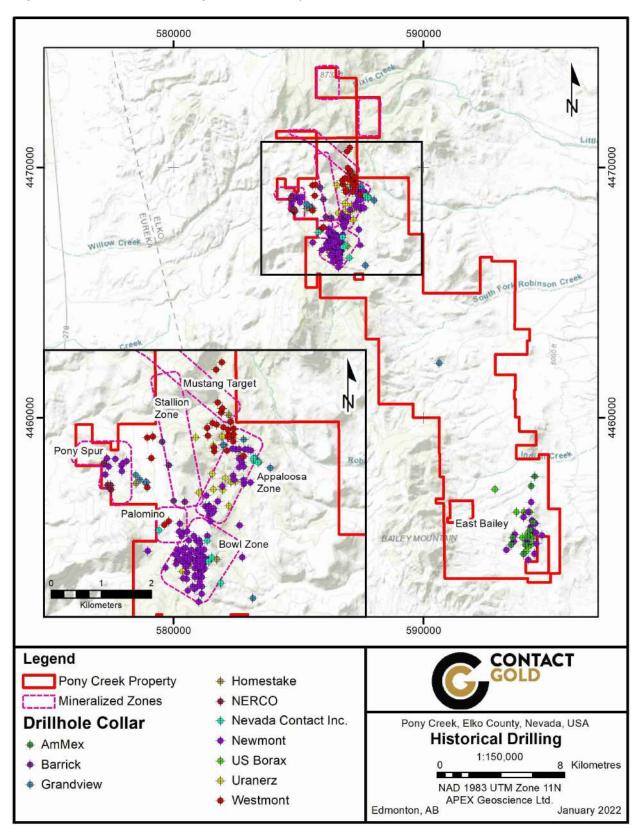



Figure 6.5. Historical drilling completed by previous operators from 1981-2007.

6.2.1 Historical Ownership and Exploration Summary of the Pony Creek Property (1980-2014)

Newmont located 180 claims at Pony Creek in the early 1980's and conducted drilling programs intermittently on the Property from 1981 through to 1989. Newmont's drilling intersected significant gold mineralization in the south lobe of a rhyolitic intrusive body and in sedimentary rocks beneath the rhyolite, in what is currently known as the Bowl Zone. In addition to the drilling, Newmont conducted geological mapping, soil sampling, and completed an aeromagnetic geophysical survey, a photogeological study and structural analysis of the northern portion of the current Property area.

In 1985, NERCO drilled 6 RC holes, but it is not known if this was done under an agreement with Newmont or on ground not controlled by Newmont.

In 1987, US Borax staked the East Bailey area, covering the Bailey, Umps and Lumps Claims of the current Pony Creek Property, and optioned a block of claims covering an exposure of altered Chainman Formation on Hill 6405. Hill 6405 is characterized by an isolated "window" of outcropping Chainman Formation siltstone and sandstone within Tertiary volcanics. Exploration work completed by US Borax included geological mapping and geochemical soil and rock sampling. US Borax completed 18 RC drillholes in the East Bailey area in 1988 and 1989 (Figure 6.5).

In 1990, Newmont optioned Pony Creek (excluding East Bailey) to Westmont. Exploration conducted by Westmont included soil sampling, an induced polarization (IP) geophysical survey and an RC drill program. In April of 1993, Quest acquired Westmont and in 1994 formed a joint venture with Uranerz. Uranerz conducted geological mapping, soil sampling, induced polarization, ground magnetics geophysical surveys and RC drilling with focus on the northern portion of the current Property. In 1995, the Uranerz joint venture was terminated.

In 1997, Quest and Barrick formed a joint venture. Quest and Barrick recompiled and interpreted historical drilling and geophysical data and completed a controlled-source audio-magnetotelluric (CSAMT) survey in the northern part of the claim block (Russell, 1999). In addition, the joint venture completed geochemical rock sampling and drilled 4 RC holes in the northern part of the Property.

From 1997-1998, Newmont leased the East Bailey area, covering the Bailey, Umps and Lumps Claims, and conducted geological mapping, soil sampling, as well as magnetic susceptibility measurements on soils and rocks samples, and IP and gravity geophysical surveys. The IP survey included both dipole-dipole and gradient array coverage but was for a restricted area. No formal reports are available for any of the Newmont surveys (Wright *pers comm.*, May 10, 2014); however, Dufresne and Schoeman (2014) report that the 1997 gravity survey delineated a horst complex. In addition to the surface exploration and geophysical surveys, Newmont completed 20 RC drillholes.

In 1999, Quest was acquired by Standard Mining Co. who subsequently abandoned Pony Creek. Later that year, Mr. Carl Pescio located new claims over the mineralized rhyolite area and leased the Property to Homestake. In 2000, Homestake drilled 5 RC holes in the northern Property area and later terminated their agreement with Mr. Pescio (Russell, 2006).

In 2001, Nevada Contact optioned Pony Creek (excluding East Bailey) from Mr. Pescio. Nevada Contact drilled 8 RC holes in 2002 before terminating the agreement in early 2003. In addition to the drilling, Nevada Contact re-logged drillholes completed by previous operators and conducted a CSAMT geophysical survey.

In July 2003, Mill City purchased the Property from Mr. Pescio, who became an officer of Mill City. In 2004, Grandview entered into a letter Option Agreement with Mill City. Grandview conducted geological mapping, surface sampling, RC and diamond drilling in the northern Property area 2005 and 2006. By 2006, ownership of Pony Creek had been transferred from Mill City to the Pescio Group. In mid-2006, Vista Gold Corp. acquired Pony Creek from the Pescio Group. Following a series of transactions, control of the Property was assigned to Allied Nevada Gold Corp. in May 2007. Neither Vista Gold Corp. nor Allied Nevada Gold Corp. conducted physical exploration of the Pony Creek Property; however, the claims were maintained.

In the summer of 2006, the East Bailey area of the Property was covered by a two-phase CSAMT geophysical survey. The CSAMT geophysical survey was conducted by Zonge Geoscience of Reno, NV, on behalf of Consolidated Global Minerals. The CSAMT survey comprised 20 survey lines at a spacing of 300 m (984 ft) (Wright, 2006b; c). The aim of the survey was to detail basement structure (horst and graben boundaries) based on a possible analogy to the Rain Mine where gold mineralization is hosted in breccias developed at the contact between the Devil's Gate Formation and the overlying Webb Formation, as well as along adjacent "feeder" structures (Dufresne and Schoeman, 2014).

The CSAMT survey outlined a north-south trending resistive unit that is spatially coincident with Hill 6405 of exposed Chainman Formation sedimentary units and the easternmost gravity high (Figures 6.6 to 6.9). Dufresne and Schoeman (2014) suggest that the resistive anomaly is likely to represent the underlying dense dolomitized carbonate and limestone sequence of the basement Devil's Gate and underlying Devonian units and likely maps a horst beneath pediment and Eocene volcanics. Figure 6.7 is a depth slice at an elevation of 1,650 m (5,413 ft) asl (approximately 250 to 300 m below surface) through the inverted and three dimensionally modelled CSAMT data provided by Wright (2006b; c) illustrating the sinuous north-south trace of a resistive anomaly (blue color) along with a portion of a second anomaly to the southwest. Figures 6.8 and 6.9 illustrate the CSAMT data modelled in 3D and plotted in Micromine with the historical RC drillholes on a long-section facing west and an oblique long-section facing southwest, respectively.

Figure 6.6. Historical RC Drillhole locations with gravity and interpreted faults, East Bailey area.

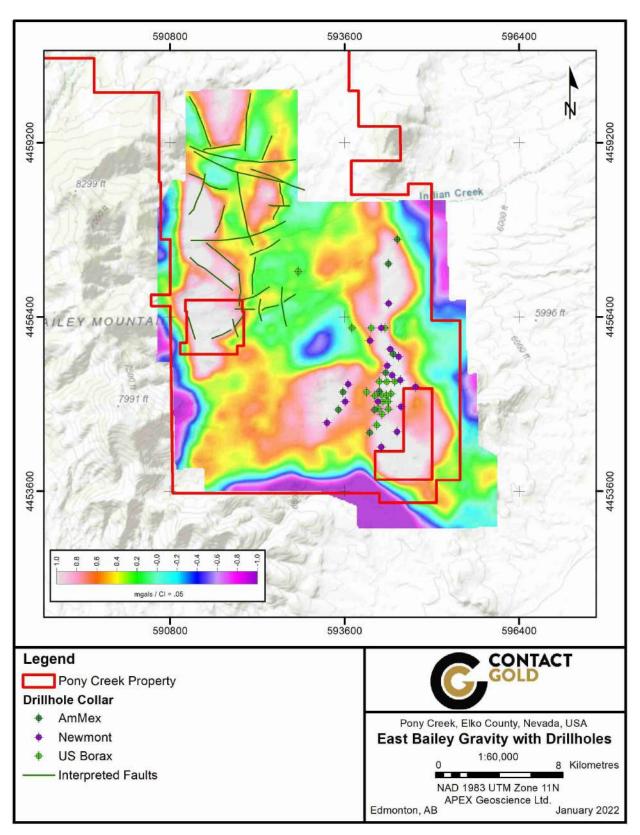


Figure 6.7. Historical RC Drillhole locations with inverted CSAMT 1,650 m elevation slice, East Bailey area.

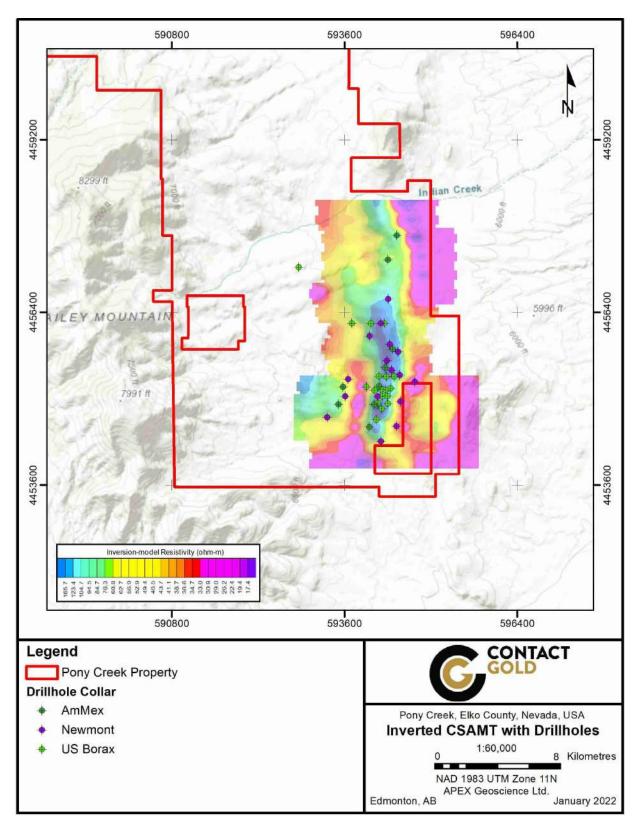


Figure 6.8. Long-section showing historical RC drillholes on 3D modeled inverted CSAMT resistivity data (looking west) (from: Dufresne and Schoeman, 2014).

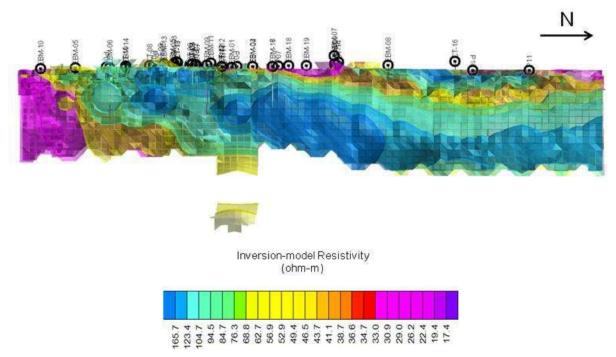
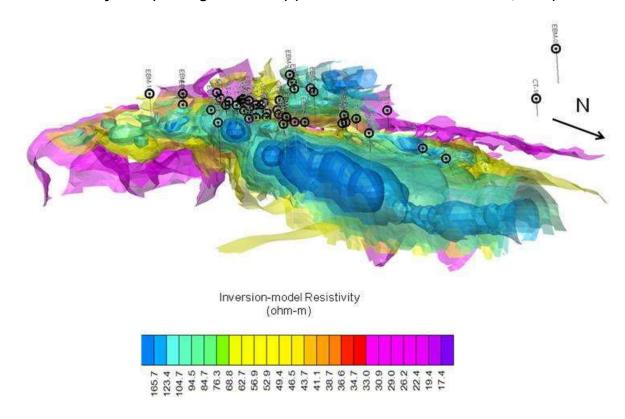



Figure 6.9. Oblique long-section showing historical RC drillholes on 3D modeled inverted CSAMT resistivity data (looking southwest) (from: Dufresne and Schoeman, 2014).

The resistive dolomites and limestones of the Devil's Gate and other Devonian formations appear to be well represented in a large north-south block (likely a fault bounded horst) overlain by the more conductive mudstones of the Webb Formation (yellow and other hotter colours) and that several of the historical RC drillholes at East Bailey were not drilled deep enough. Elevation changes in the horst block along strike of the anomaly are due to possible subtle plunge variations, or more likely, additional graben like step faulting along east-west or northwest to southeast crossing structures. Where the Devil's Gate - Webb Formation contact was shallow enough for the drilling to intersect it, assay values and alteration indicate that Carlin-type gold mineralization exists in brecciated zones (Dufresne and Schoeman, 2014).

AmMex Gold Mining Corp. was to earn an 80 per cent interest in the Lumps claim block, formerly known as the Bailey Hills property and currently referred to as the East Bailey area of the Property, from Global Minerals Ltd. with expenditures of US\$4-million dollars within a three-year period from 2006. AmMex Gold Mining Corp. completed 9 RC drillholes totaling 2,627 m (8,618.8 ft) in the East Bailey area of the Property in 2007 (Figure 6.5).

From 2005 to 2007, Grandview Gold Inc. drilled 23 RC and core drillholes, totalling 8,516 m (27,940 ft) at the Pony Creek Property. It is suggested by Spalding (2018) that Grandview's option with Mill City survived through the change in Property ownership to Allied Nevada Gold Corp. Allied Nevada Gold Corp. entered bankruptcy in March 2015. In June of 2015, a subsidiary of Waterton acquired Pony Creek, along with other exploration assets.

In June 2007, Gold Run conducted a gravity survey in the East Bailey part of the Property. The objective of the survey was to delineate structures, lithologies and alteration related to Carlin-type gold mineralization and establish a geophysical database to support future work. The survey was completed by Magee Geophysical Surveys LLC based in Reno, NV, with 379 gravity stations surveyed on a 100 m by 200 m (328 by 656 ft) grid. The data was merged and gridded with available historical Newmont gravity data to produce a gravity model for a large portion in the East Bailey area of the Property as illustrated above in Figure 6.6 (Wright, 2007). The survey identified further potential horst targets likely representative of near surface Devil's Gate – Webb Formation contact in the northwest and west portion of the survey area, along with several potentially important cross-cutting structures (Dufresne and Schoeman, 2014).

GSV acquired the East Bailey property in August 2008. In 2013-2014, exploration work conducted by GSV include geochemical rock grab and rock "scoop" sampling and a historical drilling data compilation and analysis. The geochemical sampling program was focused on a geophysical area of interest, where the gravity data delineated a linear, north-south striking drop-off to the west and crossing a northwest trending cross structure. A total of 240 surficial "scoop" samples and 39 rock grab samples were collected during the program. The maximum value for gold and arsenic (As) obtained during the rock grab and rock "scoop" sampling at East Bailey was 0.011 ppm Au and 46 ppm As (Dufresne

and Schoeman, 2014). The results of the historical drilling data compilation and analysis are discussed in Section 6.2.2.

6.2.2 Historical Drilling (1981-2007)

A total of 261 historical DDH and RC drillholes, totalling 50,645 m (166,158.1 ft), are reported to have been completed at the Property by various operators from 1981 to 2007 (Table 6.1). Most of the historical drilling has been completed in the northern portion of the Property, in proximity to the Bowl, Appaloosa and Stallion deposits. Drilling at Pony Creek has been completed by a several companies, including Newmont, NERCO, US Borax, Westmont, Uranerz, Barrick, Nevada Contact Inc., Homestake, Grandview and AmMex.

Of the 261 historical drillholes, 66% were drilled vertically (n=171), the inclination of the remainder of the holes ranged from -45 to -80°. The historical RC hole depths ranged from 11 to 610 m (36.1 to 2,001.3 ft) and averaged 178.8 m (586.6 ft). The diamond drillhole depths ranged from 193 to 906 m (633.2 to 2,972.4 ft) and averaged 412.2 m (1,352.4 ft).

Historical drilling delineated a large zone of anomalous gold mineralization in the northern portion of the Property measuring approximately 3.9 km (2.4 miles) long by 610 m (2,000 ft) wide on the southern end to 1,463 m (4,800 ft) wide on the north end of the area of interest (Russell, 2006). Historical drill collar locations are shown above in Figure 6.5. Significant gold intercepts from historical drilling programs completed in the northern portion of the Property are listed in Table 6.2. Significant gold intercepts from historical drilling programs completed at East Bailey in the southern part of the Property are presented in Table 6.3.

Table 6.1. Historical drilling at the Pony Creek Property (1981-2007).

Company	Year	RC Holes	RC (m)	RC (ft)	Core Holes	Core (m)	Core (ft)	Total Holes	Total (m)	Total (ft)
Newmont	1981-1985, 1987-1989, 1997-1998	137	21,741	71,329	2	560	1,837	139	22,301	73,166
NERCO	1985	6	519	1,703				6	519	1,703
US Borax	1988-1989	18	2,572	8,438				18	2,572	8,438
Westmont-Newmont JV	1991-1992	34	5,067	16,624				34	5,067	16,624
Uranerz	1994-1995	15	3,826	12,552				15	3,826	12,552
Barrick	1998	4	972	3,189				4	972	3,189
Homestake	2000	5	1,853	6,079				5	1,853	6,079
Nevada Contact Inc.	2002	8	2,392	7,848				8	2,392	7,848
Grandview-Mill City	2005-2007	13	3,921	12,864	10	4,595	15,075	23	8,516	27,940
AmMex	2007	9	2,627	8,619				9	2,627	8,619
Total		249	45,490	149,245	12	5,155	16,913	261	50,645	166,158

Table 6.2. Historical drilling significant gold intercepts, northern Pony Creek Property (modified from Russell, 2006).

Duillh at a ID	From	То	In	terval*	Grade Au	
Drillhole ID	(ft)	(ft)	(ft)	(m)	(opt)	(ppm)
NPC-1	75	190	115	35.05	0.033	1.13
including	120	125	5	1.52	0.214	7.34
PCD-2	305	317	12	3.66	0.053	1.82
PC-11	275	315	40	12.19	0.0126	0.43
DC 40	355	365	10	3.05	0.077	2.64
PC-12	420	435	15	4.57	0.047	1.61
PC-18	120	130	10	3.05	0.035	1.20
PC-20	405	515	110	33.53	0.167	5.73
including	440	465	25	7.62	0.45	15.43
	525	570	45	13.72	0.022	0.75
PC-22	245	270	25	7.62	0.022	0.75
	330	365	35	10.67	0.018	0.62
PC-23	395	410	15	4.57	0.316	10.83
PC-27	490	505	15	4.57	0.032	1.10
PC-30	470	510	40	12.19	0.033	1.13
PC-32	250	260	10	3.05	0.03	1.03
PC-34	395	405	10	3.05	0.193	6.62
	415	440	25	7.62	0.051	1.75
PC-35	370	420	50	15.24	0.076	2.61
including	370	390	20	6.10	0.158	5.42
PC-36	60	65	5	1.52	0.255	8.74
1 0 00	375	385	10	3.05	0.03	1.03
	450	525	75	22.86	0.027	0.93
	540	570	30	9.14	0.033	1.13
	625	640	15	4.57	0.026	0.89
PC-37	20	40	20	6.10	0.015	0.51
1 0 01	165	255	90	27.43	0.073	2.50
including	165	175	10	3.05	0.208	7.13
including	190	200	10	3.05	0.116	3.98
	260	280	20	6.10	0.016	0.55
PC-38	135	170	35	10.67	0.087	2.98
including	160	165	5	1.52	0.321	11.01
PC39	15	35	20	6.10	0.076	2.61
PC40	330	365	35	10.67	0.017	0.58
PC-42	110	190	80	24.38	0.024	0.82
PC-44	215	245	30	9.14	0.051	1.75
including	235	250	15	4.57	0.11	3.77
	255	310	55	16.76	0.038	1.30
	480	500	20	6.10	0.016	0.55
PC-45	195	225	30	9.14	0.017	0.58

Duillb ala ID	From	То	In	terval*	Grad	e Au
Drillhole ID	(ft)	(ft)	(ft)	(m)	(opt)	(ppm)
PC-48	165	200	35	10.67	0.025	0.86
PC-55	205	230	25	7.62	0.024	0.82
	290	310	20	6.10	0.015	0.51
PC-57	160	195	35	10.67	0.033	1.13
PC-58	40	80	40	12.19	0.026	0.89
PC-60	85	125	40	12.19	0.024	0.82
PC-63	100	120	20	6.10	0.019	0.65
PC-64	45	160	115	35.05	0.023	0.79
	200	250	50	15.24	0.025	0.86
PC-65	345	360	15	4.57	0.073	2.50
PC-82	535	540	5	1.52	0.1	3.43
PC-90	10	20	10	3.05	0.046	1.58
	200	270	70	21.34	0.017	0.58
PC-92	110	225	115	35.05	0.047	1.61
PC-94	160	180	20	6.10	0.062	2.13
	200	260	60	18.29	0.017	0.58
	375	415	40	12.19	0.018	0.62
	460	510	50	15.24	0.015	0.51
PC-95	760	800	40	12.19	0.043	1.47
PC-96	430	440	10	3.05	0.044	1.51
	450	480	30	9.14	0.028	0.96
PC-98	290	310	20	6.10	0.073	2.50
PC-100	260	300	40	12.19	0.025	0.86
	320	350	30	9.14	0.07	2.40
PC-111	360	430	70	21.34	0.015	0.51
PC-112	240	280	40	12.19	0.016	0.55
PC-121	520	575	55	16.76	0.048	1.65
PC-128	295	305	10	3.05	0.046	1.58
	345	390	45	13.72	0.027	0.93
95-02	560	585	25	7.62	0.016	0.55
95-07	370	385	15	4.57	0.031	1.06
	395	405	10	3.05	0.036	1.23
	430	455	25	7.62	0.035	1.20
	525	540	15	4.57	0.032	1.10
95-08	360	400	40	12.19	0.049	1.68
	420	440	20	6.10	0.027	0.93
	760	780	20	6.10	0.015	0.51
95-09	200	240	40	12.19	0.034	1.17
HPCR-4	400	415	15	4.57	0.025	0.86
HPCR_5	750	765	15	4.57	0.039	1.34
PCK-207	740	770	30	9.14	0.022	0.75

^{*}The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

Table 6.3. Historical drilling significant gold intercepts, East Bailey (modified from Dufresne and Schoeman, 2014).

Duillhala ID	From	То	In	terval*	Grade Au		Geological
Drillhole ID	(ft)	(ft)	(ft)	(m)	(opt)	(ppm)	Unit/Target
EBM-02	210	215	5	1.52	0.006	0.22	Мс
EBM-04	635	640	5	1.52	0.006	0.21	Mw/Dgd Breccia
and	645	650	5	1.52	0.007	0.24	Mw/Dgd Breccia
EBM-12	690	705	15	4.50	0.036	1.26	Brecc on Intrusive (Mw)
including	690	695	5	1.52	0.040	1.36	
including	695	700	5	1.52	0.056	1.92	
EBM-17	845	850	5	1.52	0.007	0.25	Brecc on Intrusive (Mw)
and	890	895	5	1.52	0.007	0.23	
CT-13	265	270	5	1.52	0.165	5.64	Mc?
CT-17	435	440	5	1.52	0.006	0.20	Mw?
CT-18	300	305	5	1.52	0.007	0.23	Mc?
and	350	355	5	1.52	0.041	1.39	Mw
and	675	680	5	1.52	0.028	0.96	Mw/Dgd Breccia?
P03	675	680	5	1.52	0.008	0.29	Dgd Breccia?

^{*}The true width of mineralized intercepts is not known.

Mc Chainman Formation - shale, sandstone

Mw Webb Formation - mudstone, limestone

Dgd Devil's Gate Formation - limestone

Historical drilling at Pony Creek began in 1981, with Newmont conducting drill programs through to 1989. As expected, there is limited information on the drilling contractors, drill types and sampling methods used in the historical drill programs. There is no information available regarding the sample preparation procedures used prior to 2000. Lab certificates indicate that samples were processed at Monitor Labs, American Assayers Laboratories, Chemex Labs Inc. and Geochemical Services Inc.

Newmont carried out drill programs on the Property from 1982 to 1989. Newmont's drill programs were focused on the Bowl Zone, the Appaloosa Zone and Pony Spur. Newmont's drilling intersected significant gold mineralization in the south lobe of a rhyolitic intrusive body and in sedimentary rocks beneath the rhyolite, in what is currently known as the Bowl Zone. Newmont's early drilling at the Bowl Zone covered an area measuring approximately 1.3 km (0.8 miles) by 660 m (2,165 ft).

Nerco executed a single drill program in 1987, consisting of 6 RC holes totaling 519 m (1,702.8 ft) in the Pony Spur prospect area.

US Borax completed 18 RC holes in 1988-1989, totalling 2,572 m (8,438.3 ft), in the East Bailey area, in the south central and southeastern corner of the Property. Of the 18 US Borax drillholes, only CT10 and CT18 intersected Devil's Gate Formation limestone and therefore tested the important Devonian – Mississippian contact. Several of the drillholes were terminated well above the apparent contact.

In 1991-1992, Westmont in a joint venture with Newmont, completed 34 RC holes totalling 5,067 m (16,624 ft). The drilling focused on the northern portion of the Property, with the majority of drillholes spanning from the Appaloosa Zone to the North Zone, and a few drillholes completed at Palomino and to the west of the Stallion Zone. The 1991 drilling was completed by Hackworth Drilling of Elko, Nevada, using an Ingersol-Rand PH600 truck mounted RC drill and an MPD 1000 track-mounted drill. In 1992, a Schramm C650 track-mounted RC drill was used. Samples were collected at 1.524-meter (5 ft) intervals and split with a Gilson splitter when dry, or a rotating cone splitter when wet.

In 1994-1995, Uranerz completed 15 RC holes totalling 3,826 m (12,552.5 ft) in the Appaloosa Zone.

In 1997-1998, Newmont completed 20 RC drillholes totalling 5,451m (17,885 ft) in the East Bailey target area. Half of the drillholes intersected the Devil's Formation Limestone.

In 1998, Barrick completed 4 RC holes totalling 972 m (3,189 ft) at the Stallion Zone.

Nevada Contact Inc. completed 8 RC holes in 2002, totalling 2,392 m (7,847.8 ft) at the Property. Four holes were completed at the Bowl Zone, three at the Appaloosa Zone and one was drilled at Palomino. A track-mounted RC rig was used by Nevada Contact for most of their 2002 holes, with a truck-mounted TH-75 RC rig used for hole PCK02-06A.

Homestake completed 5 RC holes on the Property in 2000, totalling 1,853 m (6,079.4 ft), at the Bowl Zone, North Zone and to the east of Pony Spur. Samples were collected every 1.524 meters (5 ft), there is no information on the condition of samples (wet or dry), or what collection method was used. Eklund Drilling of Elko, Nevada, conducted the Homestake RC drilling using a track-mounted MPD 1500 drill rig.

In 2005 and 2006, Grandview completed 10 HQ-diameter diamond core drillholes, totalling 4,595 m (15,075.5 ft). In 2007, Grandview completed 13 RC holes, totalling 3,921 m (12,864.2 ft). Most of Grandview's drilling was conducted at Bowl Zone, the Appaloosa Zone, and to the east of Pony Spur. The diamond drilling was completed by Boart Longyear, there is no available information for the RC drill contractor, drill types or drilling methods used. Portions of Grandview's 10 diamond core holes were stored in the Waterton storage facility in Lovelock, Nevada, and have been recovered by Contact Gold.

AmMex Gold Mining Corp. (AmMex) completed 9 RC drillholes totaling 2,627 m (8,618.8 ft) in the East Bailey area of the Property in 2007. Drillholes P3 and P7 intersected anomalous gold values with P3 intersecting several assays in excess of 0.1 g/t (0.003 opt) Au from a depth of 465 to 540 ft (141.73 to 164.59 m) and also 0.29 g/t (0.008 opt) from 675 to 680 ft (205.74 to 207.26 m,), which appears to coincide with the Webb - Devil's Gate Formation contact zone and requires follow-up drill testing (Dufresne and Schoeman, 2014).

During 2013 and 2014, GSV acquired and compiled the geological and sample logs for the historical drilling conducted by Newmont and US Borax at East Bailey. The data was entered into Micromine along with the 3D modelled CSAMT data. The drillholes and 3D modelled CSAMT data are presented above in Figures 6.8 and 6.9. Anomalous gold mineralization over significant drilling widths has been intersected in several RC drillholes and is associated with a number of stratigraphic – geological horizons (Table 9.3). GSV's study concluded that in most cases, the holes that did not intersect the contact either were not drilled deep enough or, in the case of some of the southwestern drillholes, intersected an intrusion instead of the Devil's Gate Formation – Webb Formation contact (Dufresne and Schoeman, 2014).

6.3 Historical Mineral Resource Estimates at the Pony Creek Property

Historical mineral resource estimates provide background information related to the extent of mineralization identified by previous operators at the Property. The QPs have not done sufficient work to classify the historical estimates as current mineral resources, and therefore, the historical estimates are not being treated as current resources.

6.3.1 Historical Resources Prior to CIM Definition Standards and Guidelines

Previous technical reports on the Property by Russell (2004; 2006), Gustin (2017) and Spalding (2018) include a limited discussion on a historical resource estimate calculated by Newmont in the Upper and Lower Bowl areas of the Property. Newmont's historical Indicated Resource estimate totalled 1,034,281 tonnes (1,140,100 tons) of 1.95 g/t (0.057 opt) Au and was calculated in the fall of 1983 (Russell 2004; 2006). Spalding (2018) estimates that the resource was based upon the first 40 drillholes completed by Newmont; however, the authors are unaware of the number of drillholes used nor any other technical details with respect to how this resource estimate was calculated. The issuer and the authors are treating this resource estimate as historical in nature. The authors have not viewed the source document containing the Newmont historical resource estimate for Pony Creek.

The authors have reviewed the discussion in Russell (2004) and Spalding (2018) and have determined that it is suitable to reference the work in the context of this Technical Report as it has been publicly disclosed. However, this and other historical resources discussed in this section contain limited information and are not compliant with CIM Definition Standards and Guidelines (2014, 2019).

6.3.2 Historical 2004 - 2006 Resource

In 2004, a technical report on the Property written by R. H. Russell, on behalf of Mill City International Corp., calculated historical mineral estimates for gold mineralization over an area measuring 3.9 km (2.4 miles) long by 610 m to 1,460 m (2,000 ft to 4,800 ft) wide, extending northeast from the Bowl area mineralized zone (Russell, 2004). The historical mineral resource estimate was prepared in accordance with CSA, NI 43-101 and the then current, "CIM Definition Standards on Mineral Resources and Reserves (CIM Definition Standards) dated August 20, 2000.

The Inferred Mineral Resource Estimate (MRE) for Pony Creek calculated by Russell (2004) is 29,401,041 tonnes (32,409,100 tons) at a grade of 1.51 g/t (0.044 opt) Au for 1,426,000 ounces of gold. The estimate was based on 151 drillholes within the resource area and used a polygonal estimation methodology. A cut-off of 6.1 m (20 ft) of 0.51 g/t (0.015 opt) was used with 48 of 151 holes (32%) meeting or exceeding the cut-off criteria. The average thickness of intercepts meeting or exceeding the cut-off was 11 m (36 ft). Russell (2004) assumed the geological and grade continuity at Pony Creek, based on the documented geological and grade continuity at the other deposits situated in the Carlin Trend. The methodology employed to calculate the MRE is not acceptable today and the issuer and authors are treating this estimate as historical in nature.

"The area used in the Inferred Resource reflects the proximal relationship of known gold mineralization to the rhyolite intrusive. Both the rhyolite- and sediment-hosted mineralization is documented and assumed. The two estimates do not consider mineralization more distal to the intrusive, including potential mineralization at the Mississippian/Devonian contact; however, such distal mineralization will likely occur, based on the size and strength of the known mineralizing system at Pony Creek. As stated earlier, the available data are not complete enough to determine the relationship between the true thickness of the gold intercepts and the length of the intercept in the drillholes, and in most cases, the orientation of the mineralization is unknown (Russell, 2004; 2006)."

In 2006, R. H. Russell re-calculated the MRE for the Pony Creek Property on behalf of Vista Gold Corp. and Allied Nevada Gold Corp. Russell (2006) re-stated the previous historical MRE for Pony Creek of 29,401,041 tonnes (32,409,100 tons) at a grade of 1.51 g/t (0.044 opt) Au for 1,426,000 ounces of gold and listed the same methodologies for the resource estimate calculation. The methodology employed to calculate the MRE is not acceptable today and the issuer and authors are treating this estimate as historical in nature.

The historical Inferred MRE's calculated by Russell (2004; 2006) pre-dated the CIM Definition Standards on Mineral Resources and Reserves (2010). A Qualified Person (QP) does not have enough information to verify the resource estimates as a current mineral resource and the reported methodology employed is not acceptable today, as per the current CIM Definition Standards and Guidelines (2014, 2019), therefore, the estimates calculated by Russell (2004; 2006) are considered historical in nature. The

authors and the Issuer are not treating the historical estimates as current mineral resources or mineral reserves.

A current CIM compliant mineral resource estimate for Pony Creek is presented below in Section 14.

6.4 Historical Production at the Pony Creek Property

No recorded mineral production has been attributed to Pony Creek and no workings larger than a few small prospect pits are known to exist on the Property.

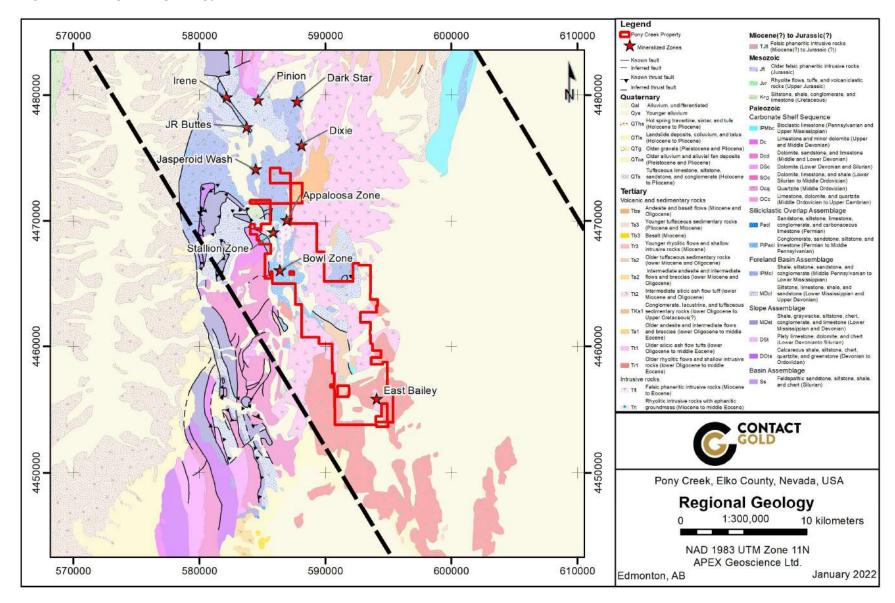
7 Geological Setting and Mineralization

The regional geological information in the following section is largely derived from previous technical reports in the area by Abbott (2003), Russell (2006), Hunsaker (2010; 2012a; b), Shaddrick (2012), Koehler et al. (2014), Dufresne and Nicholls (2017), Gustin (2017) and Spalding (2018), and references therein. Information on the Property scale geology and mineralization is sourced from previous technical reports and studies on the Property by Jones and Postlethwaite (1993), Russell (1999), Abbott (2003), Russell (2006), Dufresne and Schoeman (2014), Gustin (2017) and Spalding (2018), and references therein. The authors of this Technical Report have reviewed these sources and consider them to contain all the relevant geological information regarding the Property area.

7.1 Regional Geology

Pony Creek is located at the southeast end of the Carlin Trend. The greater Carlin Trend area occupied a passive continental margin during early and middle Paleozoic time, which is the time of deposition of the oldest rocks observed in the region (Stewart, 1980). A westward-thickening wedge of sediments was deposited at and west of the continental margin, in which the eastern facies tend to be coarse-grained and carbonate-rich (shelf and slope deposits, carbonate platform deposits) while the western facies are primarily fine-grained siliciclastic sediments (deeper basin deposits). The Carlin Trend sits proximal to the shelf-slope break, although this break was not static over time.

In the Late Devonian through Middle Mississippian, east-west compression of the Antler Orogeny is traditionally believed to have caused folding and faulting, the most significant manifestation of which is the Roberts Mountain Thrust. This regional fault placed western facies siliciclastic rocks over eastern facies carbonate rocks across the region. In this report, the western facies are referred to as allochthonous whereas the eastern facies are autochthonous. As the result of this tectonism, the Mississippian and Pennsylvanian overlap assemblage of clastic rocks was deposited across the region (Smith and Ketner, 1975). Regional stratigraphy shows interleaved allochthonous and autochthonous late Paleozoic sediments in the Piñon Range (Smith and Kettner, 1975; Rayias, 1999; Mathewson, 2001; Longo et al., 2002).


Multiple igneous intrusions occur along the Carlin Trend. The oldest igneous rocks are reported to be Late Triassic in age (Teal and Jackson, 2002). Other igneous rocks include: a Late Jurassic dioritic intrusion documented at the Goldstrike Deposit (Bettles, 2002); intermediate to mafic dikes of Jurassic and Cretaceous age; the Cretaceous age Richmond Stock (quartz monzonite); the Eocene age Welches Canyon Stock; and hydrothermally altered and locally gold-bearing felsic to mafic dikes/dike swarms of Tertiary (Eocene) age (Ressel, 2000).

Post-dating the Carlin-style gold mineralization are Eocene, Miocene and younger volcanic rocks which blanket large areas of the region with lava flows, ash-flow tuff beds and tuffaceous sediments. Primarily rhyolitic in composition, the volcanic cover rocks comprise a bimodal suite also including rocks as mafic as basalt.

Tertiary crustal thinning (extension) commenced in late Eocene and Miocene, approximately coeval with the onset of Miocene volcanism. This extension is generally east-west directed and is manifested in the Basin and Range physiography. The extensional faulting takes the form of normal block faulting which can evolve into listric normal faulting with progressively greater extension. The significant consequence of extensional faulting is the dismemberment and tilting of pre-existing features (Dufresne and Nicholls, 2017).

Several aspects of the geological setting complicate gold exploration in northern Nevada. The largest gold deposits are hosted in the carbonate-rich eastern facies of lower to middle Paleozoic rocks, with much less mineralization found in the allochthonous, western facies siliciclastic rocks. Therefore, most gold mineralization has been discovered where "windows" through the western facies rocks above the Roberts Mountain Thrust expose eastern facies rocks. Miocene volcanic rocks also obscure the underlying geology, almost certainly concealing numerous, to-be-discovered deposits. The extensional faulting distorts and dismembers pre-existing features (including ore deposits), making the projection of mineralized trends beneath younger cover rocks especially difficult (Dufresne and Nicholls, 2017).

Figure 7.1. Regional geology (after Smith and Kettner, 1978).

7.2 Geology of the Piñon Range

The geology of the Piñon Range was originally defined by the stratigraphic studies and mapping of Smith and Ketner (1975; 1978; Figure 7.1) who principally described the Paleozoic sedimentary units and documented Mississippian strata overlapping structures that can be related to the Mississippian Roberts Mountains thrust fault (Silberling et al., 1997). Abbott (2003) noted issues in the stratigraphic and structural interpretations of rocks in the Piñon Range and offered an alternative stratigraphic interpretation utilizing his compilation of the published and unpublished interpretations that could be found, but initially focused on the work of Smith and Ketner (1975; 1976; 1978), Dean et al. (1990), and Abbott and Keith (1999). Most of the formations were the same as defined by Smith and Ketner (1975), but changes to a few of those formations and a few newer formations primarily followed the work of Iverson (1991) and Silberling et al. (1997). The interpreted stratigraphic assignments of Abbott (2003) are summarized in Table 7.1.

The central part of the Piñon Range is composed of Ordovician through Mississippian marine sedimentary rocks (Smith and Ketner, 1975) that form a structural dome with clastic marine sedimentary rocks as young as Pennsylvanian or early Permian along the margins. At least one large-scale, asymmetrical anticline is present, but younger horst and graben structure developed within a framework of overprinted high-angle faults is a prominent feature of the range (Dufresne and Nicholls, 2016). Tertiary sedimentary rocks that were deposited in shallow freshwater lakes and overlying intermediate to felsic Eocene volcanic rocks are present on the flanks of the range and within adjacent grabens.

7.2.1 Piñon Range Regional Tectonics and Structure

A prominent structural feature of the Piñon Range is the Piñon Range anticline and the related "Piñon graben" of Abbott (2003). The Piñon Range anticline is a north-south trending, south-plunging, asymmetric, apparently west-vergent fold with Paleozoic carbonate rocks as old as the Ordovician Pogonip Group in the core. Abbott (2003) considered the anticline to be related to the development of the Eocene Ruby Mountains metamorphic core complex, which overprinted the folds and faults of the Antler, Sonoma and Sevier fold and thrust belts.

"It is believed to be formed as part of the metamorphic core complex forming event that begins in Nevada with major east-directed underthrusting in the Mesozoic and continues into the Tertiary, culminating in the unroofing of the Ruby Mountains metamorphic core complex and others such as the Snake Range, Raft River Range, and Schell Creek Range metamorphic core complexes in eastern Nevada. The westward-vergent, low-angle movement of the upper crust has resulted in a series of asymmetric folds to the west of those ranges such as the Butte Valley anticline, the Radar Range syncline, the Illipah anticline, and perhaps the Adobe Range syncline. The reason that the west-directed deformation has not been more noticeable is that most of the deformation was taken up by underthrusting of a flat-dipping, oceanic crust under the continent and the west-directed folds and faults are adjustments to that major deformation (the Laramide orogeny) by the continental cover (Abbott, 2003)."

Table 7.1. Piñon Range Stratigraphy (modified from Abbott, 2003; Russell, 2006).

Cenozoic Units

Quaternary Alluvium, Colluvium, Gravel and Landslide Deposits

Pliocene-Pleistocene Hay Ranch Fm

Miocene Palisade Rhyolite Miocene Carlin and Humboldt Fms Eocene Indian Well Fm

Eocene Robinson Mountain Volcanic Rocks

Eocene Elko Fm

Eocene(?) Conglomerate, Sandstone, Siltstone, Limestone

Intrusive Igneous Units

Eocene Granite, Monzonite, Quartz Diorite Eocene Rhyolite Intrusions at Pony Creek

Paleozoic Sedimentary Units

Overlap Assemblage Pennsylvanian-Permian Undivided Pennsylvanian Tomera and Moleen Fms Mississippian Tonka Fm (Diamond Peak Fm of Smith and Ketner 1975)

Allochthonous Assemblage

Mississippian Stump Springs Turbidites Devonian-Mississippian Lee Canyon Fm Mississippian Webb Formation of Abbott (2003) Devonian Woodruff Fm

Ordovician Vinini

Autochthonous Shelf Assemblage

Mississippian Chainman "Fm":

(Pilot Shale, Dale Canyon Fm, Diamond Peak Fm) Mississippian Webb Fm (Island Mountain Fm)

Devonian Devils Gate Limestone

Devonian Nevada Fm:

(Upper Dolomite Member, Beacon Peak Member and Oxyoke Fm of Abbott, 2003)

Extended Shelf and Outer Reef Units

Silurian-Devonian Lone Mountain Dolomite

Ordovician Hanson Creek Formation

Ordovician Eureka Quartzite

Pogonip Group (Antelope Valley Limestone)

The Piñon Range anticline can be traced from south of Pony Creek, through the Railroad mining district, just west of the town site of Bullion, Nevada. From there it continues just to the east of north and extends under Tertiary cover for about 8 km (5 miles) before emerging in the vicinity of the Emigrant Springs gold deposit owned by Nevada Gold Mines LLC (Abbott, 2003).

Basin and Range faults have overprinted the Piñon Range anticline as evidenced by several range-bounding, normal faults. These faults generally separate the Paleozoic interior of the Piñon Range from the Tertiary and Quaternary rocks on the flanks of the range.

7.3 Property Geology

Information on the Property scale geology and mineralization is sourced from previous technical reports and studies on the Property by Jones and Postlethwaite (1993), Russell (1999), Abbott (2003), Russell (2006), Dufresne and Schoeman (2014), Gustin (2017) and Spalding (2018), and references therein. The authors of this Technical Report have reviewed these sources and consider them to contain all the relevant geological information regarding the Pony Creek Property area. A detailed geological map of the northern part of the Property is illustrated in Figure 7.2. A stratigraphic section of the geology of the Property the is presented in Figure 7.3.

Middle to Upper Devonian through Permian carbonate and clastic sedimentary rocks are exposed at the Pony Creek Property. The south-plunging Piñon Range anticline exposes progressively older units toward the north, with the Devil's Gate Limestone being the oldest unit exposed on the surface of the Pony Creek Property.

The Devil's Gate Formation is comprised of medium to thickly bedded, light and dark grey, fine-grained limestone formed in a reef environment. Iverson (1991) interpreted the top of the Devil's Gate Formation as a karst surface; however, the upper contact of the Devil's Gate Formation is not well exposed at the Property. A small exposure of limestone in the western part of Section 26 is interpreted to be Devil's Gate Limestone, but the upper contact with the Mississippian Webb Formation is not well exposed. In the East Bailey Property area, the Devil's Gate Formation limestone has been intersected as a grey to dark grey recrystallized limestone in historical RC drillhole but does not outcrop on the Lumps claim block within East Bailey.

Drilling by Newmont at Pony Spur, and drilling conducted further to the west on ground still controlled by Newmont, intersected Mississippian Webb Formation ranging in thickness from 0 to greater than 40 m (131 ft). The Webb Formation is characterized by siliceous mudstone and claystone and was defined by Smith and Ketner (1968) for exposures near Webb Creek in the northern Piñon Range. As originally defined, the Webb Formation was allochthonous with respect to the Roberts Mountains Thrust Fault. Rocks hosting gold in what was to become the Rain Mine were also mapped as Webb Formation, requiring that the Webb Formation be in both the upper and lower plates of the Roberts Mountains Thrust Fault, or that the thrust fault separate the Webb Formation and the Devil's Gate Limestone in the Rain open pit.

In the East Bailey area, a series of light grey to black shales and siltstones have been tentatively correlated with the Webb Formation mudstone and limestone of elsewhere in the region. This unit is overlain by the Chainman Formation shale, sandstone with conglomerate lenses, limestone and calcareous sandstones. These two units are commonly silicified with alteration increasing with proximity to the Devil's Gate Formation contact (Jennings, 2001).

Figure 7.2. Detailed geological map of the northeastern portion of Pony Creek. The detailed mapping was conducted by Contact Gold in 2018 and is combined with the 1:250,000 USGS mapping shown in Figure 7.1 (after Smith and Kettner, 1978).

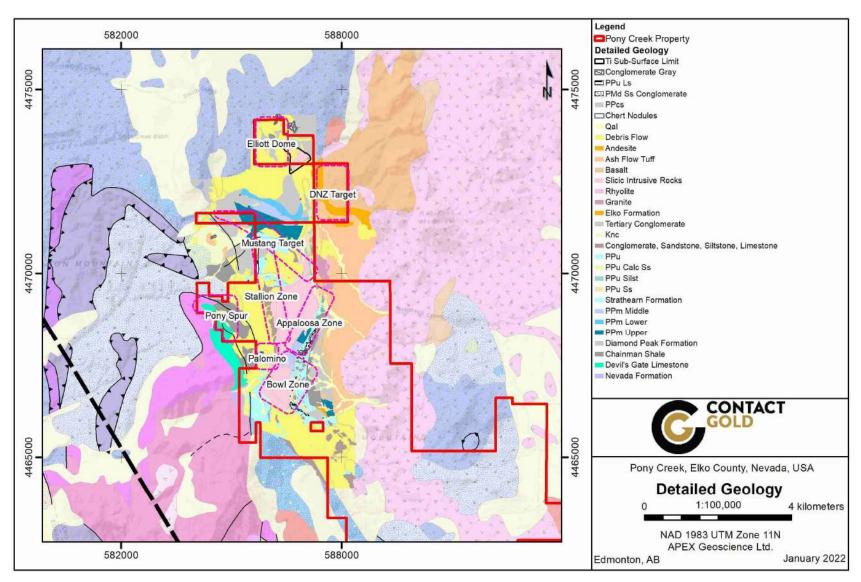
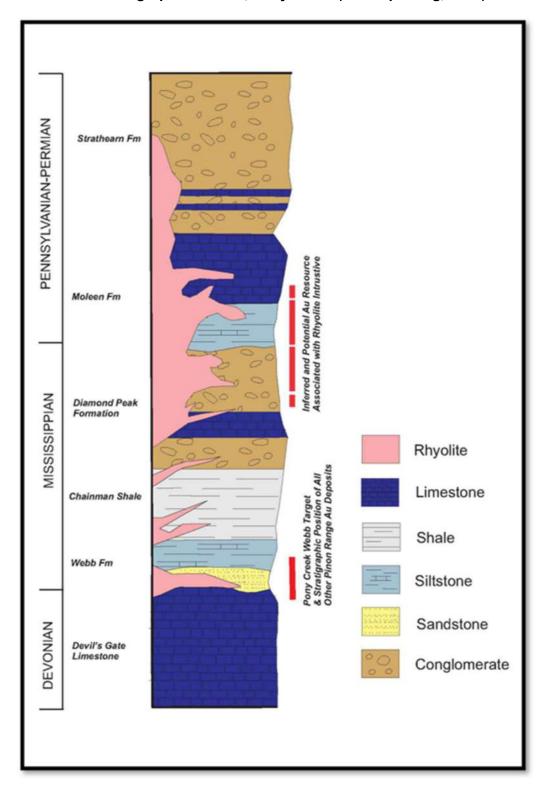



Figure 7.3. Detailed stratigraphic section, Pony Creek (from Spalding, 2018).

The variable thickness of the Webb Formation at Pony Creek appears to be due to low angle faulting eliminating the unit in places during emplacement of the Roberts Mountains allochthon, and subsequent low angle normal movement during younger Tertiary extensional faulting. Most drillholes completed outside of the Pony Spur prospect area have not reached the Devil's Gate Formation, so the thickness of Webb Formation remains unknown under most of the Property area. The top of the Devil's Gate is strongly silicified, previous drilling has identified anomalous gold mineralization in collapse breccia at the Pony Spur prospect. In addition, drilling by Contact Gold at Pony Spur has encountered significant gold mineralization at the Webb Creek Formation contact.

At Pony Creek, the Mississippian, Pennsylvanian and Permian rocks of the overlap assemblage are problematic. This is due to the chaotic and laterally discontinuous nature of the coarse clastic strata formed by being shed off from the Antler highlands just to the west of Pony Creek during multiple orogenic pulses of the Antler orogeny which began in Mississippian time. The lower contact of the Chainman Shale of the Chainman Formation is not well exposed on the Property (Spalding, 2018). However, the geology of the East Bailey area in the southern part of the Property has been described by Jennings (2001) as Chainman Formation exposed as a small window of altered and slightly mineralized shale, siltstone and conglomerate in Tertiary volcanic rocks and alluvium (Hill 6405; Figure 7.4). The surface exposure of the pre-Tertiary rocks is sheared and locally silicified with moderately anomalous arsenic, mercury and detectable gold. The pre-Tertiary exposure of Chainman Formation rocks trends north-northeast and appears to be a horst. which was confirmed by historical gravity data and drilling. Where drillholes tested a magnetic high in the western portion of the Lumps claims block, a buried, possible Eocene-aged intrusive was intersected (Dufresne and Schoeman, 2014). Overlying the pre-Tertiary sediments at East Bailey is a Tertiary-aged conglomerate/talus unit, and this in turn is overlain by a biotite, latite to dacitic tuff (Dufresne and Schoeman, 2014).

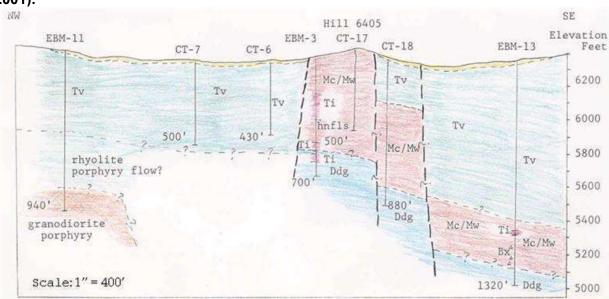


Figure 7.4. East Bailey cross section facing northeast, straddling Hill 6405 (from Jennings, 2001).

Geoscience Ltd.

The Chainman Formation at Pony Creek is overlain by a sequence of conglomerates, sandstones and shales that are assigned to the Upper Mississippian to Lower Pennsylvanian Diamond Peak Formation of Smith and Ketner (1975; 1978). Chert and quartzite clasts are the most common rock types in the conglomerates. The Diamond Peak Formation is widespread over the Property, especially on the western and southern boundaries. In the northern Piñon Range, the Diamond Peak Formation was previously referred to as the Tonka Formation by Dott (1955) for those rocks that were deposited across the Roberts Mountains Thrust Fault.

The Middle to Upper Pennsylvanian Moleen Formation, composed of gray, medium-bedded, silty limestone with banded, nodular chert and conglomerate interbeds overlies the Diamond Peak Formation and is in turn overlain by unnamed upper Pennsylvanian to Permian sedimentary rocks (Smith and Ketner, 1975; 1978), some of which have been assigned to the Strathearn Formation during recent geological mapping by Contact Gold. Calcareous sandstone and conglomerate with interbedded limestone make up this unnamed "Penn-Perm" unit.

A porphyritic rhyolite intrusive body of unknown age is present as a north-south elongated body that is approximately 3.2 km (2 miles) long and 1.2 km (0.7 miles) wide. Rocks of this body have been variously described as rhyolite, felsite or felsic porphyry. Four felsic lithologies have been described, including: 1) white- to cream-colored, fine-grained feldspar porphyry, 2) white- to cream-colored, fine-grained quartz porphyry, 3) fragmental rhyolite, and 4) dark-colored to nearly black, aphanitic felsite. Locally, the rhyolite appears to be a volcanic sandstone. These rock types are hydrothermally altered and locally mineralized. The intrusive body lies near the axis of the north-south trending, south-plunging Piñon Range anticline in the central part of the Piñon graben, as shown in Figure 7.2.

Volcanic tuffs, flows, and volcaniclastic rocks previously assigned to the Eocene Indian Well Formation by Abbott (2003) crop out on the east side of the Property and are at least 243.8 m (800 ft) thick. This sequence is now assigned to the Robinson Mountain volcanic field of Eocene age (Lund Snee, 2013; Lund Snee and Miller, 2015). The base of these rocks is not observed within the Property, and they occur only in fault contact with the Paleozoic rocks described above.

7.4 Mineralization

Three known mineralized zones of gold mineralization occur at Pony Creek, these include the Bowl, Appaloosa and Stallion zones. Additional anomalous zones and target areas delineated at the Pony Creek Property include Pony Spur, Palomino, Mustang, Elliott Dome and East Bailey.

The gold mineralization discovered to date at Pony Creek is principally hosted within the Tertiary (or Jurassic) rhyolite, or within altered and silicified calcareous clastic rocks of the Pennsylvanian – Permian (Penn-Perm) Moleen Formation. Known stratigraphic controls of mineralization include: the pre-mineral rhyolite sill acting as a barrier to focus

mineralized fluid flow along its lower margin and within it at structural intersections, permeable calcareous conglomerates and sandstones, and fossil hash limestone beds.

In general, the structural controls to gold mineralization at the Property include:

- Northeast striking folds and thrust faults and northwest striking transverse faults formed during Mesozoic compressional deformation events;
- North-south striking tension faults formed between the northwest transverse faults, as first order controls on mineralization; and
- Intersections of northwest and northeast striking faults as secondary controls.

The mineralized zones and target areas of the northern part of the Pony Creek Property are presented in Figure 7.5 and the Pony Creek resource areas are presented in Figure 7.6.

7.4.1 Bowl Zone

The Bowl Zone consists of repeating packages of sandstone, conglomerate and limestone with a rhyolite plug in the centre which spreads out laterally capping the repeating units. These units are offset by a series of steeply dipping faults that generally trend north to northwest. The main style of mineralization at the Bowl Zone is sub horizontal and follows the contact between the rhyolite cap and the underlying units. Mineralization that follows this trend is found within the rhyolite plug in the centre of the Bowl Zone, as well as peripheral to the rhyolite plug. In places, mineralization is offset by faulting; however, mineralization does not extend very far away from the rhyolite, therefore it is unclear how much of an effect the faulting has on mineralization. This mineralization is modeled as discrete, sub-horizontal, mineralization trend surfaces, in between fault blocks. The second mineralization style is a steeply east dipping pod of mineralization on the east edge of the Bowl Zone found within and near the rhyolite unit. This mineralization has a small north-south extension and is truncated by a fault further to the east which cuts off the mineralization.

The mineralization at the Bowl Zone is associated with oxidized and unoxidized marcasite, pyrite, and minor realgar and stibnite that occur along fractures and as disseminations in and beneath the rhyolite intrusion, as well as in the matrix of breccias in the intrusion (Jones and Postlethwaite, 1993).

Hydrothermal alteration at the Bowl Zone is characterized by a quartz-sericite-pyrite assemblage within the rhyolite intrusive body in, and near, north-trending and northeast-trending faults. The fault zones are fragmental and/or brecciated, and contain very fine-grained quartz, sericite, and pyrite or limonite. Pyrite occurs both as disseminated grains and on fracture surfaces while limonite occurs after pyrite or is secondary in fractures. Away from the faults the intrusion becomes less altered, grading outward from a rock with relict feldspar ghosts to one with a distinct porphyritic texture. In the centre of the intrusion,

Figure 7.5. Mineralized zones and anomalous areas in the northern portion of the Pony Creek Property.

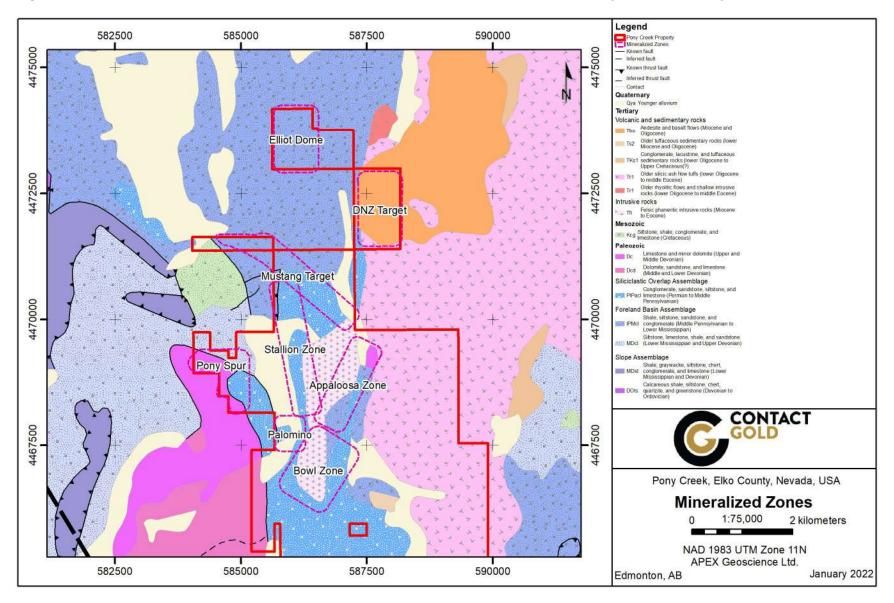
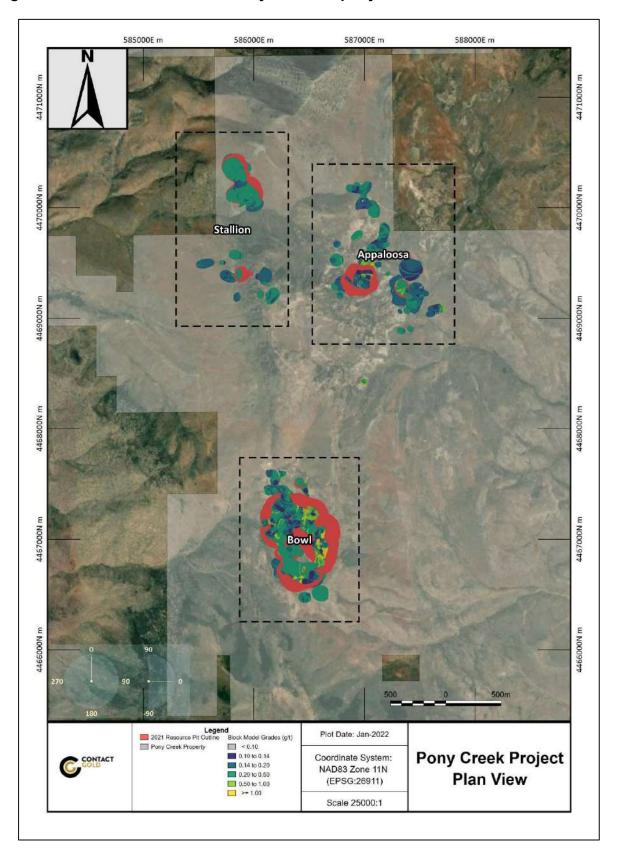



Figure 7.6. Resource areas of the Pony Creek Property.

a granular texture in which the feldspars have been argillicly altered is present, leaving open or clay-filled vugs. The intrusion locally contains 3% to 5% pyritized and chloritized hornblende crystals (Spalding, 2018).

Newmont geologists used the terms "sanded rhyolite" and "rhyolite sand" to describe the texture of the rhyolite intrusion in some of the altered and mineralized areas. They reported that sanded rhyolite consists of medium-grained, rounded clasts of glassy rhyolite breccia commonly occurring near the margins and at the base of the intrusion, and locally as narrow stockwork zones within the intrusion. The distribution and texture of the sanded rhyolite suggest that the unit formed in vitric chill margins and was apparently affected by subsequent hydrothermal activity.

Sedimentary rocks along the margins of the intrusion and immediately beneath it are silicified, decalcified, sulphidized and variably oxidized near gold mineralized zones (Spalding, 2018).

As presently defined by drilling, the Bowl Zone is somewhat continuously mineralized over a north-south strike length of approximately 1,200 m, with maximum east-west extents of 660 m and a maximum depth of about 200 m. The high-angle, structurally controlled mineralization along the eastern limits of the Bowl Zone is generally narrow, sinuous, and irregular, but can have substantial grades. For example, Newmont's hole PC-20 intercepted 22.9 m of continuous gold mineralization starting at 124.97 m that averages 7.17 g/t Au, including a 6.1-meter interval of 15.99 g/t Au. While this intercept is from a vertical RC hole, which therefore overstates the true thickness of the steeply dipping mineralization along the fault, the grade is consistent with adjacent holes. It seems likely that the mineralizing fluids in the Bowl Zone were at least partially focused along this high-angle north-south structure, which is near the eastern contact of the rhyolite intrusion in this area. The mineralized fault may be related to the reactivation of a structural zone that controlled the hypothetical dike-like roots of the flat-lying portions of the rhyolite intrusion (Spalding, 2018).

Select significant results from Contact Gold's recent (2017-2019) RC drill programs at the Bowl Zone include:

- 1.36 g/t (0.040 opt) Au over 43.74 m (143.5 ft) length from 116.89 m (383.5 ft) depth in drillhole PC17-24, including 3.35 g/t (0.098 opt) Au over 15.55 m (51 ft) length from 125.03 m (410.2 ft);
- 2.12 g/t (0.062 opt) Au over 22.86 m (75 ft) length from 64.01 m (210 ft) depth in drillhole PC17-040, including 4.53 g/t (0.132 opt) Au over 9.14 m (30 ft) length from 65.53 m (215 ft);
- 2.51 g/t (0.073 opt) Au over 47.24 m (155 ft) length from 86.87 m (285 ft) depth in drillhole PC18-03;

- 1.00 g/t (0.029 opt) Au over 92.97 m (305 ft) length from 50.29 m (165 ft) depth in drillhole PC18-04; and
- 2.42 g/t (0.071 opt) Au over 35.05 m (115 ft) length from 266.7 m (875 ft) depth in drillhole PC18-33, including 3.15 g/t (0.092 opt) Au over 24.38 m (80 ft) length from 274.23 m (899.7 ft) (Contact Gold Corp., 2020a).

The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

The Bowl deposit mineralization remains open, particularly to the northwest direction toward the Palomino target. A full list of significant intercepts intersected at the Bowl Zone is presented in Section 10. Schematic cross sections of the Bowl deposit are presented in Figures 7.7 and 7.8.

Figure 7.7. Schematic cross section of the main Bowl Zone with LVA (or mineralization trend) surfaces and estimation domains, as well as gold assays and downhole geology. The main mineralization trend shows the discrete LVA surfaces between the modelled fault blocks.

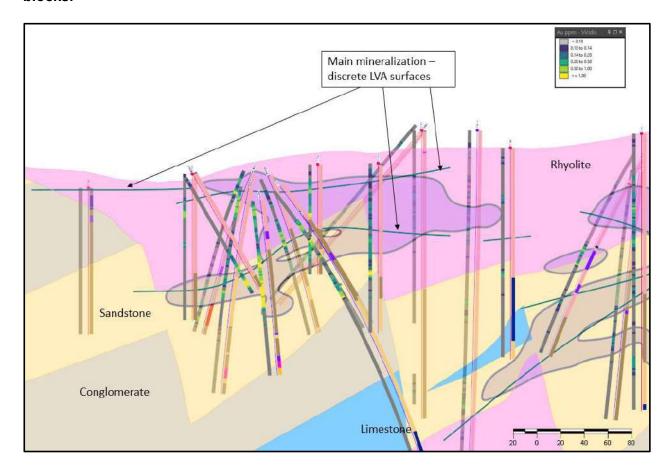
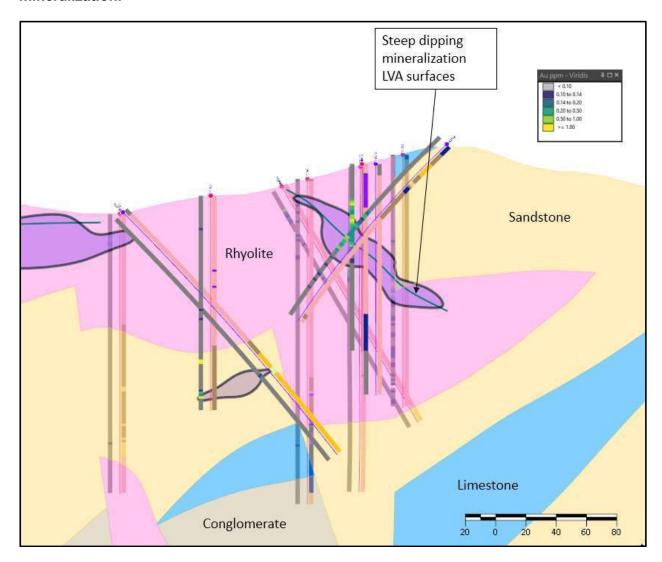
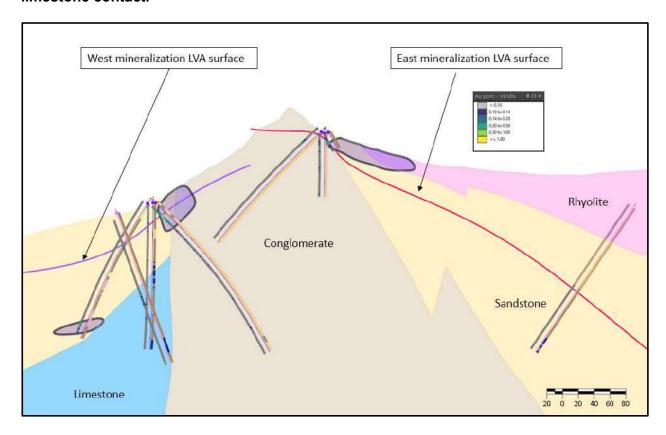



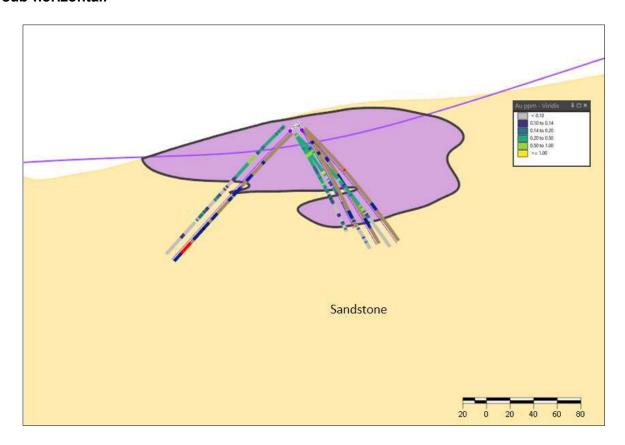
Figure 7.8. Schematic cross section of the eastern edge of the Bowl Zone with LVA surfaces and estimation domains, as well as gold assays and downhole geology. The LVA surfaces at the eastern Bowl Zone show the secondary, steeply east dipping mineralization.


7.4.2 Stallion Zone

The Stallion Zone was discovered by Contact Gold in 2018. The mineralization at Stallion comprises oxide gold mineralization and is interpreted as sub-horizontal and stratigraphic based. The rocks hosting gold mineralization at Stallion show strong silicification and oxidation of Penn-Perm calcareous sandstone in drilling and in sparse, recessive outcrops at surface. As presently defined by drilling, mineralization at the Stallion Zone has been intersected over a north-south strike length of approximately 1,430 m, with maximum east-west extents of 769 m. The mineralization is hosted in the North Stallion Zone and a cluster of mineralized zones that make up the South Stallion Zone (Figures 7.9 and 7.10).

The geology in the South Stallion Zone consists of a layered sandstone and limestone package on the west side of a conglomerate ridge that dips away from the ridge to the west. The conglomerate ridge is modeled as a vertical plug but there is no drilling that delineates the base of the conglomerate to understand its vertical extent. On the east side of the conglomerate ridge is a steeply east dipping rhyolite unit overlying a sandstone unit. Mineralization occurs where these packages intersect the conglomerate, as well as along the contact between different units. The mineralization trend surfaces in this area follow the lithological contact between the sandstone and limestone on the west, and the rhyolite and sandstone on the east of the conglomerate ridge (Figure 7.9). The mineralization surfaces deviate from the lithological contacts as mineralization bleeds into other geological formations.

This large silicified, north-striking rib of Pennsylvanian-Permian aged calcareous conglomerate at the South Stallion Zone is interpreted by Spalding (2018) as the same host lithology as GSV's North Dark Star deposit to the north of the Property. Gold grades are enhanced where multiple cross cutting northwest and northeast striking faults intersect the north-south conglomerate ridge that occupies the Emigrant-Dark Star-Dixie-Bowl zone structural corridor (Spalding, 2018).


Figure 7.9. Schematic cross section of the South Stallion Zone with LVA (or mineralization trend) surfaces and estimation domains, as well as gold assays and downhole geology. The LVA surface in red dips steeply to the east following the rhyolite and sandstone contact angles. The LVA surface in purple follows the angle of the sandstone and limestone contact.

The mineralization of the North Stallion Zone is not as well supported with only 12 drillholes penetrating the zone. All drillholes start and end within a thick sandstone unit. Minor intervals of limestone are logged but are not material and were not modelled. The mineralization trend is based off the downhole assays for each of the 12 drillholes. The LVA mineralization surface for the Stallion North Zone is modelled sub-horizontal and concentrated at the surface (Figure 7.10).

The Stallion Zone mineralization remains open for expansion in all directions, particularly along strike to the north.

Figure 7.10. Schematic cross section of the North Stallion Zone with LVA surfaces and estimation domains, as well as gold assays and downhole geology. The LVA surface is sub-horizontal.

Select significant results from Contact Gold's recent (2018-2019) RC drill programs at the Stallion Zone include:

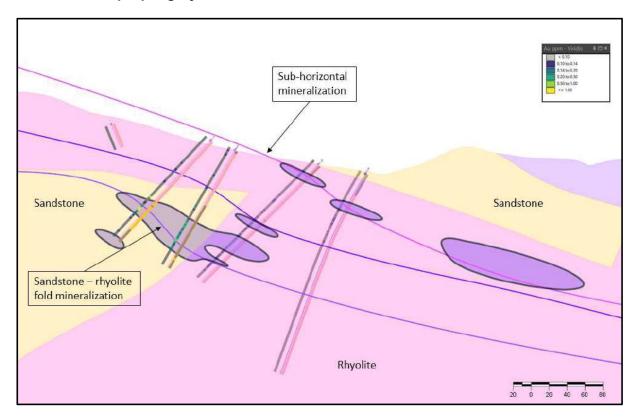
- 0.42 g/t (0.012 opt) Au over 33.53 m (110 ft) length from 4.57 m (15 ft) depth in discovery hole PC18-018, including 1.11 g/t (0.032 opt) Au over 4.5 m (14.8 ft);
- 0.71 g/t (0.021 opt) Au over 10.67 m (35 ft) length from 19.81 m (65 ft) depth in hole PC18-022; and

 0.33 g/t (0.010 opt) Au over 92.97 m (305 ft) length from surface in hole PC18-51, including 0.6 g/t (0.017 opt) Au over 13.7 m (44.9 ft) (Contact Gold Corp., 2020a).

The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

7.4.3 Appaloosa Zone

The Appaloosa Zone of the Pony Creek Property was formerly referred to by Contact Gold as the North Zone.


The Appaloosa Zone consists of a flat laying to sub-horizontal sandstone unit with a rhyolite cap. This sandstone – rhyolite package appears to be folded and overturned to the west. The mineralization is concentrated at the contact between the sandstone and rhyolite near the overturned fold hinge. There is another zone of mineralization closer to surface within the rhyolite which follows a more sub-horizontal orientation similar to the sandstone – rhyolite contact (Figure 7.11). Mineralization has been intersected over an area measuring approximately 1,400 m in length and 1,050 m in width. The most continuous mineralization identified to date in this area occurs within two north-trending zones that occur within a larger northwest-trending zone of generally lower-grade and more erratically distributed mineralization (Figure 7.6).

Select significant results from Contact Gold's recent (2017-2019) RC drill programs at the Appaloosa Zone include:

- 0.84 g/t (0.024 opt) over 7.62 m (25 ft) length from 85.35 m (280.0 ft) depth in hole PC19-17, including 1.56 g/t (0.045 opt) Au over 3.05 m (10 ft) from 88.39 m (290 ft);
- 0.38 g/t (0.011 opt) Au over 28.96 m (95 ft) length from 83.82 m (275 ft) depth in hole PC19-16, including 2.19 g/t (0.064 opt) Au over 3.05 m (10 ft) from 89.92 m (295 ft); and
- 0.34 g/t (0.010 opt) Au over 44.20 m (145 ft) length from 25.91 m (85 ft) depth in hole PC17-21 (Contact Gold Corp., 2019b).

The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization.

Figure 7.11. Schematic cross section of the Appaloosa Zone with LVA surfaces and estimation domains, as well as gold assays and downhole geology. The LVA domains are shown as filled purple-grey outlines.

7.4.4 Pony Spur

The Pony Spur target was acquired in 2017 as part of Contact Gold's expansion of Pony Creek. The claims cover a regional-scale, northwest-striking fault that projects into the Bowl Zone and into the major southeast flexure in the otherwise north-striking Emigrant/ Dark Star/Pony Creek structural zone. Very strong silicification with a high barite and hematite content occurs within the Mississippian Chainman sandstone at Pony Spur. Recent soil sampling at Pony Spur has delineated an Au-in-soil anomaly measuring 200 x 600 m (656 x 1,968 ft) with gold values of up to 1.18 g/t Au. In addition, Contact Gold drilled three holes in 2018 and intersected significant gold mineralization at the contact between the Devonian Devil's Gate and the Webb Formation. Significant results are listed in Table 7.2.

Table 7.2. Significant results of drilling at the Pony Spur target (from Spalding, 2018).

Drilhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au (g/t)	Au (opt)
PC18-25	57.91	60.96	3.05	10	0.15	0.004
	70.10	91.44	21.34	70	0.17	0.005
	100.59	105.16	4.57	15	0.22	0.006
PC18-26	65.53	92.97	27.43	90	0.19	0.006
	102.11	106.68	4.57	15	0.17	0.005
PC18-27	53.34	73.15	19.81	65	0.21	0.006

^{*}The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

7.4.5 Palomino, Mustang, Elliott Dome and DNZ

The Palomino target lies immediately to the northwest of the Bowl Zone and is interpreted as situated along the same major northwest structure as the Bowl Zone and the Pony Spur target. Recent soil sampling has defined an anomalous Au-in-soil area measuring 400 x 500 m (1,312 x 1,640 ft) with local Au-in-soil values of up to 0.55 g/t Au.

The Mustang Zone extends west-northwest from Appaloosa and north from the Stallion Zone. The Mustang Zone is defined by west-northwest trending structurally controlled gravity and Au-in-soil anomalies extending over a length of 2 km (1.2 miles). The geophysical and Au-in-soil anomalies crosscut Penn-Perm Moleen and Strathearn formation clastic and carbonate rocks with local Au-in-soil values of up to 0.54 g/t Au. The Mustang Zone has not yet been drill tested.

The Elliott Dome anomalous area lies adjacent to the Jasperoid Wash deposit (off-Property). It measures $500 \times 1,000 \text{ m}$ ($1,640 \times 3,280 \text{ ft}$) and is defined by north-south structurally controlled CSAMT and Au-in-soil anomalies cutting clastic and carbonate rocks. A maximum Au-in-soil values of 0.34 g/t Au was returned from the anomalous area. Elliott Dome has not yet been drill tested.

DNZ is a target area that is interpreted to lie along the Dark Star – Emigrant Structural corridor. DNZ is delineated by geophysical anomalies and its target stratigraphy is covered by post mineral volcanic rocks. DNZ has not yet been drill tested.

7.4.6 East Bailey

The East Bailey target area is in the southeastern portion of Pony Creek and was acquired by Contact Gold in February 2018. Limited historical RC drilling in and around the East Bailey area has intersected several different styles of mineralization, including:

 Carlin-Trend type gold mineralization at the contact of the Webb Formation mudstone and brecciated Devil's Gate Formation limestone, and

- Within the Webb Formation mudstone in contact with sills or dikes.
- Anomalous values in Au, molybdenum (Mo), antimony (Sb) and mercury (Hg) were also intersected on a brecciated contact of a latite dyke and the Devil's Gate Formation limestones.

Highlights of historical drill programs conducted at East Bailey are summarized from Dufresne and Schoeman (2014) as follows:

"Drillhole CT3 intersected anomalous gold values in banded shale and siltstone in rocks well above the important contact and yielded 0.14 g/t (0.004 opt) Au over 1.52 m (5 ft) from 480 ft to 485 ft (146.30 to 147.83 m), likely hosted in Chainman Formation shales or Webb Formation mudstone. The contact zone between a dacitic tuff and an underlying andesite in CT13 yielded a significant gold assay value of 5.64 g/t (0.165 opt) Au over 1.52 m (5 ft). Hole CT17 intersected 0.2 g/t (0.006 opt) Au over 1.52 m (5 ft) near the Devil's Gate Formation, which comprised brecciated limestone cemented with grey silica. Another interesting gold value located proximal to the Devil's Gate contact was identified in drillhole CT18 and with 0.96 g/t (0.028 opt) Au over 1.52 m (5 ft). Higher up in hole CT18, another anomalous value of 1.39 g/t (0.041 opt) Au over 1.52 m (5 ft) was intersected in grey siltstone, presumed to be the lower Webb Formation."

When the highest 43 gold results obtained in historical RC drilling are analysed with respect to their position in each RC drillhole and their distance away from the contact of the Webb Formation mudstone and the Devil's Gate Formation limestone it was found that: i) 18 values were located on or near the contact, ii) 21 values where located midway up the hole; i.e., in Webb Formation mudstones or even Chainman Formation, and iii) 4 values were intersected close to the top of the holes; i.e., in Chainman Formation shales and sandstones or in contact with sills or Tertiary volcanics (Dufresne and Schoeman, 2014).

8 Deposit Types

Contact Gold is targeting Carlin-type gold deposits within the Property. Carlin-type gold deposits in northern Nevada represent the second highest concentration of Au in the world and around 6% of annual gold production globally (Muntean et al., 2011). The general features of Carlin-type gold deposits in northern Nevada, as summarised from Arehart (1996), Tosdal (1999) and Muntean et al. (2011), include:

- 1. A calcareous sedimentary host rock in areas of mature hydrocarbon fields.
- Deposits which are aligned along old, reactivated basement lineaments and concentrated in host rocks within or adjacent to structures in the lower plate of a regional thrust.
- 3. Micron-sized gold in arsenical pyrite.
- 4. A silver/gold (Ag/Au) ratio which is typically <1.
- 5. A trace element assemblage which includes arsenic (As), antimony (Sb), barium (Ba), thallium (Tl) and mercury (Hg).
- 6. Age of hydrothermal activity is Eocene to Oligocene (42 to 30 Ma). This corresponds with a shift from compression to extension and renewed magmatism in northern Nevada.
- 7. A spatial (but not temporal) association with intrusive rocks.
- 8. An alteration assemblage which features jasperoid, argillization, silicification and decarbonisation (proximal to distal).

The following description of the genesis of Carlin-style gold mineralization in Nevada is taken from Cline et al. (2005):

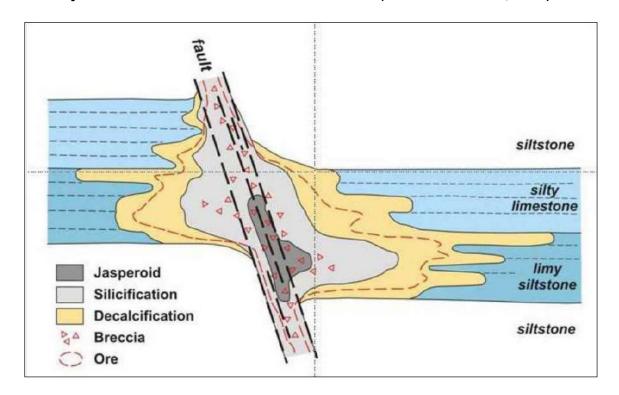
"We propose the following model for the formation of the deposits (Fig 8.1) based on similarities observed in Carlin type deposits in all districts in Nevada and which attempts to reconcile the differences for some deposits. The model is consistent with geologic observations and our current understanding of the complex geologic history of this part of Nevada and allows for Au to be sourced from several locations in the crust.

During the Eocene, asthenosphere was reintroduced to the base of North American lithosphere as the shallow Farallon plate was removed (Humphreys, 1995; Westaway, 1999; Humphreys et al., 2003). This activity generated high K calcalkaline magmatism that swept southward through the latitude of the Carlin deposits at ~42 Ma. As the Farallon plate was removed, mantle-derived mafic magmas were injected into lower crust, generating partial melting and transferring

mantle- derived volatiles with juvenile isotopic signatures into the crust (Fig 8.1). Associated prograde metamorphism and devolatilization of lower crust probably released additional volatile constituents, possibly including Au, which were incorporated into lower crustal melts. As the melts rose buoyantly, they eventually became saturated with volatiles and exsolved hydrothermal fluids that may have transported bisulfide-complexed Au. Exsolved hydrothermal fluids, with possible metamorphic fluid contributions, continued to move upward and evolve compositionally as they scavenged or fixed various components along fluid pathways. Au along with As, Sb, Hg, S, and trace metals such as Pb may have been scavenged from Neoproterozoic rocks, particularly pelitic beds (Seedorff, 1991).

As overthickened upper crust began to extend, aqueous hydrothermal fluids migrated into and rose along dilatant faults associated with reopened Proterozoic rift-related structures (Figure. 8.1). Reactions between carbonaceous, pyritic, baritic, calcareous rocks and ascending fluids may have increased H_2S concentrations, thus increasing the capacity of the fluid to scavenge Au. In the northern Carlin trend, ascent of auriferous fluids appears to be temporally associated with a transition from early, broad-scale extension, to a stage of pervasive rotational faulting. Ore fluids here further appear to have been driven to topographic highs, perhaps in response to thermal input from upper crustal (6–10 km deep) plutonic complexes. In most districts, ore fluids were diluted by deeply convecting meteoric waters.

Ore fluids accumulated in areas of reduced effective mean stress along boundaries of older Jurassic and Cretaceous stocks, and in structural culminations where aquitards focused, diverted, or trapped fluids, promoting increased fluid/rock reaction. Reactive fluids decarbonatized and argillized wall rocks, further enhancing permeability and exposing and sulfidizing available reactive host-rock Fe. Pyrite precipitation decreased the H_2S in the ore fluids, thereby causing coprecipitation or adsorption of Au and other bisulfide-complexed metals, and Au was incorporated in trace element-rich pyrite as submicron particles of native Au or structurally bound Au.


Eventual reduced flow of ore fluids and collapse of unexchanged meteoric water into the system caused fluid mixing and cooling and precipitation of late orestage minerals. Metals derived from local siliciclastic and calcareous rocks were incorporated in late ore-stage minerals and outer pyrite rims. Late calcite veins precipitated above deposits or overprinted ore-stage mineralization as fluid reactivity was neutralized. Spent, dilute, low-temperature ore fluids exited ore zones, locally forming unmineralized jasperoids in exhaust structures."

Carlin-type gold deposits situated in similar stratigraphic settings as Pony Creek include the Rain, Emigrant Springs, Pinion and Dark Star deposits to the north of the Property. Rain, Emigrant and Pinion are characterized by disseminated gold mineralization focused in solution-collapse and karst breccia at the upper contact

between the Devil's Gate Limestone and overlying Webb Formation shale-sandstone units. The Dark Star deposit occurs in Pennsylvanian Tomera and Moleen Formation rocks that are cut by north, northeast and northwest striking faults and hydrothermal breccias and/or jasperoids (Dufresne and Nicholls, 2017). These deposits are near high-angle faults and have geochemically anomalous Au, As, Sb, Hg and Tl, and alteration in the form of argillic alteration in the silty or clay-rich rocks, decalcification of carbonate-bearing units, jasperoid and residual or introduced organic carbon. They are characterized by concentrations of very finely disseminated gold in silty, carbonaceous and calcareous rocks. The gold is present as micron-size or smaller disseminated grains, often internal to iron-sulphide minerals (predominately arsenian pyrite) or with carbonaceous material in the host rock (Spalding, 2018).

Carlin-type gold deposits are generally variably stratiform in nature, with mineralization localized within specific, favorable stratigraphic units, particularly where a permeability contrast occurs such as a contact or more permeable bed. Carbonate removal is the most common alteration, and fault and solution breccias can also be primary hosts to mineralization (Figure 8.1). In some Carlin-type gold deposits, such as Beast and Deep Star in the Carlin area, silicic dikes of Eocene age have been strongly mineralized and have been mined with the adjacent sedimentary-rock hosted material. At Pony Creek's Bowl and Appaloosa zones, most of the presently identified mineralization is hosted along the lower margin of the north trending rhyolitic intrusion and within adjacent Penn-Perm calcareous sandstones and conglomerates (Spalding, 2018).

Figure 8.1. Schematic diagram of a Carlin-type gold deposit showing discordant structurally controlled and stratabound mineralization (from Robert et al., 2007).

9 Exploration

As of the effective date of this Technical Report, exploration conducted by Contact Gold within the current Pony Creek Property includes 113 RC drillholes and 5 DDH totalling 25,921 m (85,042.7 ft), 1:2,400 geological mapping covering 52 km² (20 miles²), 7,118 surface soil samples, 441 rock chip and channel samples, 427 ground gravity stations with processing and interpretation and an approximately 66 line-km (41 line-mi) controlled-source audio-frequency magneto-tellurics (CSAMT) geophysics program.

Exploration efforts from 2020-2021 focused on a review of all geological data including subsurface geology modelling, drilling (see Section 10) and metallurgy (see Section 13) leading to resource estimates (see Section 14) on the Stallion, Bowl and Appaloosa zones found in the northwestern portions of Pony Creek.

9.1 Geological Mapping

Geological mapping programs started in Pony Creek in 2017 and continued throughout 2018. The mapping program was focused on the northwestern portions of Pony Creek between the Elliott Dome target area and Bowl Zone. The mapping program was conducted by Paul Hohbach and Jamie Robinson and focused on formational stratigraphy, favorable host rocks, structural paragenesis and gold occurrences in the Pennsylvanian-Permian clastic and carbonate rocks. Mapping areas were also targeted using available geophysics and geochemistry data. The program completed 13 mapping areas covering 52 km² (20 miles²) at 1:2,400 (1 inch:200 ft) and covered mineralized zones in the northwest including the Elliott Dome, DNZ, Mustang, Stallion, Pony Spur, Palomino, Bowl Zone and the Appaloosa Zone. The completed geological interpretation map is shown above in Figure 7.2 and detailed geological descriptions are provided in Section 7.3 (Spalding, 2018).

Structural analysis from the geological mapping programs at Pony Creek identified 10 different fault types and provided information on the mineralization controls of the Property. A general summary of the structural framework of the Property has been reproduced from Spalding (2018), as follows:

"The mapping effort indicates that the structural setting of the area encompassing the Bowl and North Zones, and the West Target and the Pony Spur Target, is a wrench fault system formed during southeastward directed Mesozoic compression. West-Northwest strike slip faults formed to accommodate differential thrust related compression on the north versus the south sides of them. North-Northeast striking folds and faults formed perpendicular to the direction of thrust movement, and the north-south striking ore controlling faults were formed as enechelon, tension faults which were then open for hydrothermal fluid flow of the mineralizing system to focus along."

The structural framework with the geological mapping is shown in Figure 9.1 and the mapping legend is presented in Table 9.1.

Figure 9.1. Geological interpretation map of the Pony Creek area showing blocks, relative fault movements and target areas for the 2017-2018 mapping programs in coordinate system UTM Zone 11 NAD 83 (from Spalding, 2018).

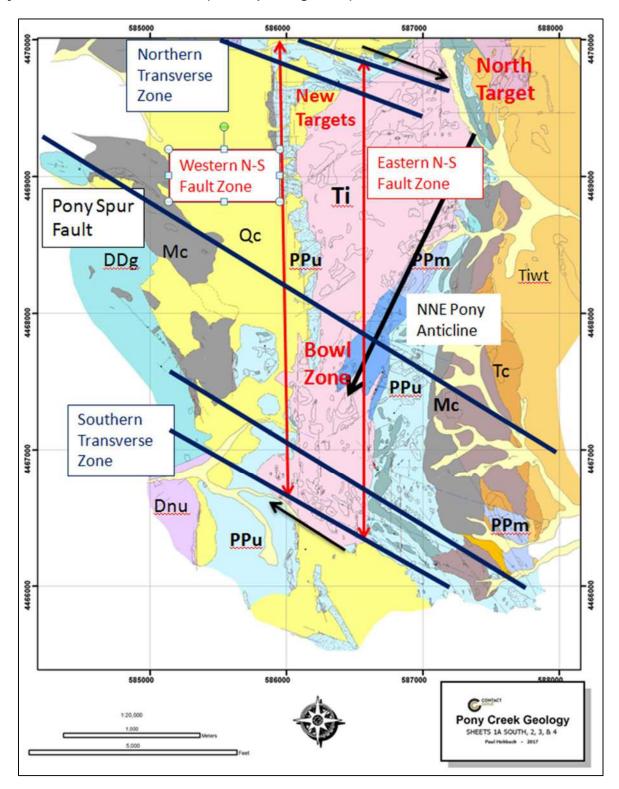
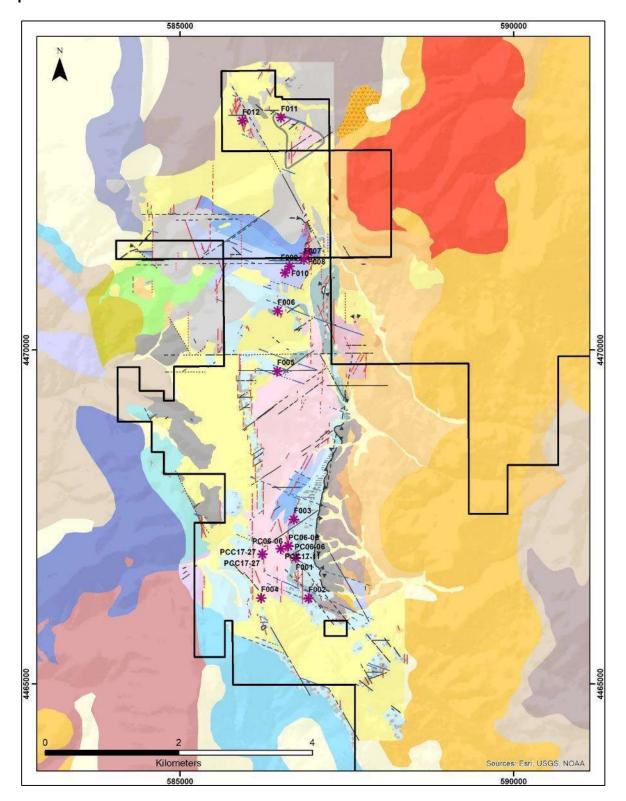


Table 9.1. Geological legend for Figure 9.1 (from Spalding, 2018).

Cal	AL DEBUTE IA	Silt sand and alluvium along stream courses
Qel		Slope rubble and colluvium derived from local rock units; includes terrace gravel
Tb	ANDESITE :	nd BASALT FLOWS AND TUFFS (UPPER MICCENE) Dark gray to black dense, rs, columnar-jointed in places. Basaltic tuffs form slopes in many areas. Thickness 1000 feet.
Tiwt	ASH-FLOW	UFFS Rhyolitic to decitic ash-flow tuffs, veriably-welded. This unit includes diments and local andestic tuffs.
Tiwb	BASAL TUFF volcaniclastic	AND TUFFACEOUS SEDIMENTS Local unit where exposed by erosion; includes Conglomerate/ sandstone, densely-welded Tuff and biotite Tuff. Local eration noted.
Ti	SILICIC INTI	RUSIVE ROCKS (TERTIARY) Small rhyclific stocks, sills and narrow dykes along dos noarly all older rock units and is found along all faults that exhibit mineral alteration.
Tig		TE (TERTIARY) Phaneritic, "granitic" phase of the Ti intrusive group of rock units in the ek project ares. Unattered, macroscopic biotite is characteristic of this rock unit.
Tov	RHYOLITE 1 of Smith & K	O DACITE PLUGS AND FLOWS (TERTIARY) Older volcarios(?), (OLIGOCENE?) unit stner is used to denote thyolitic to dacitic plugs and flows that occur along the in of and above the Tig unit. In places Tig appears to intrude Tov. Flow bands are
Te .	weathers "sa siltstone, ker	ATION (OLIGOCENE TO EOCENE) Thin-bedded, light –gray and tan limestone that tety yellow'; ostracod coquinities common. The unit includes laminated shale, agen shale, claystone, and man; biff and tuffaceous take beds are common in the nickness about 760m (2500 feet).
Tes	TERTIARY C clasts derive about 760m	ONGLOMERATE Conglomerate, sandstone, siltstone and limestone containing if from Paleocoic rocks. Outcrops are rare where not silicified. Maximum thickness 2500 feet).
Knc		NYON FORMATION Gray shale, variegated sandstone/ conglomerate and istone members. Slope former; maximum thickness about 670m (2200 feet).
PPu	sitstone, san calcareous. I	JPPER/LOWER PERMIAN AND UPPERPENNSYLVANIAN ROCKS Thin-bedded distane, conglomerate, shale and sometimes fossiliferous limestone, some units are Pullincules the Stratheam Formation. Very little or no limestone occurs intercalated erates in the Upper Permian part of the section. Maximum thickness feet).
	cal ss	
	Cong	
	Säst	
	Ss	
	Claystone	
pps	ferruginous li non-calcared the base of the sandstones.	N FORMATION (LOWER PERMIAN TO UPPER PENNSYLVANIAN) Sandy limestone, mestone, yellow siltstone, carbonaceous sandstone's shale, both calcareous and us sandstone and siltstones, quantities and chert-clast conglomerates, particularly at the formation. Limestones are often fossilliferous with fusilinids noted in calcareous sold graded beds and cross-bedding in sandstones noted at Pony Creek, Maximum kn (2000 See).
Pt	fossiliferous	RMATION (MIDDLE PENNSYLVANIAN) Interbedded and interfingering gray, limestone and siliceous-clast conglomerates. Some cross-bedded sandstones and sandstones. Thickness 520-510m (1700-2000 feet).
PPm		RMATION (MIDDLE AND LOWER PENNSYLVANIAN) Gray ledge-forming limestone, d conglomerates. Thickness 365-490m (1200-1600 feet). Main host at Dark Star.
	Upper Unit	Interbedded, fossiliferous thin to medium-bedded ledge-limestones, sandy limestone and conglomerate. Rock unit contacts horizontal and sharp; some cherty beds with sharp horizontal contacts with limestones. Occasional chert-replacement of solitary horn corals. Biostrome beds and fusilinids common.
	Middle Unit	Interhedded chert-limestone, gray limestone and "blue" calcareous sandstone with minor conglomerate beds towards the top of the unit. Forms the "Pony Anticline". Fossiliferous beds common.
	Lower Unit	Basal "cobble" conglomerate overlain by yellow calcareous silistone, thin imestones and conglomerates. Basal unit is gradational with conglomerates and conglomeritic sandations of the underlying Diamond Peak Formation.
PPcs	Middle Unit - to white silty,	RATE Unnamed conglomerate unit (acc. Smith/ Ketner) time-equivalent to the Moleen Formation. Consist of siliceous-clast conglomerate with a white, fine sand non-calcareous metrix. Strongly-silicifed at Jasper Wash. Unit thickness (PH) 200-800 feet plus.
PMd	Conglomeral and siltstone	EAK FORMATION (LOWER PENNSYLVANIAN AND UPPER/LOWER MISSISSIPPIAN) a and cearse grey sandstone with mostly chart and quantate clasts. Some shale beds. A North Pony Creek altered units exhibit strong manganese-oxides and ernatite. Trickness 1400m plus (4700 feet plus)
Mc	and biotitic, v conglomerat	SHALE (UPPER AND LOWER MISSISSIPPIAN) Gray, thin-bedded limestone thite medium-grained sandstone at the base; sometimes arkosic. Black shale, s, and pebbly mudstones also are common. The sandstone units are particularly illicitied at Pony Spur along with the basal limestones. Thickness 490-780m set).
Ddg	DEVIL'S GA	E FORMATION (UPPER AND MIDDLE DEVONIAN) Monotonous, thick sequence of to thick-bedded micritic, fossiliferous, crystalline timestones. Thickness 285m
	And there has	7

Outcrop and core samples were collected during the geological mapping program for gold and multi-element geochemical assay, as well as geochronology, petrography and micropaleontology analysis. Results from the multi-element and gold geochemical sampling programs are discussed below in Section 9.2. Petrographic and geochronological studies on rocks from Pony Creek are mentioned in Spalding (2018) and Hibdon (2019a) but the results were not available to the authors.

A total of 12 outcrop samples and 9 drill core samples were submitted for micropaleontology analysis. The analysis identified radiolaria, conodonts and fusulinids that range from the Mississippian to the Late Permian in age. A summary table and a sample location map are found below (Table 9.2 and Figure 9.2).


Table 9.2. Micropaleontology analysis results from Pony Creek (from Spalding, 2018).

Sample ID Outcrops	Analyses selected	Best age results
FS-01	Conodonts	Pennsylvanian to earliest Permian
FS-02	Conodonts + radiolaria	late Middle Permian to Late Permian, Guadalupian?
FS-03	Radiolaria	Mississippian to Permian, or younger
FS-04	Fusulinids	Missourian (Late Pennsylvanian)
FS-05	Conodonts + fusulinids	Leonardian (Early Permian)
FS-06	Conodonts	Undetermined
Cores		
PC06-06 650'	Conodonts	Atokan?, Morrowan to Atokan
PC06-06 666'	Conodonts	not analyzed
PC06-06 667'	Conodonts	not analyzed
PC06-06 776'	Conodonts	Pennsylvanian to earliest Permian
PC06-06 849'	Conodonts	Undetermined
PC17-11 848'	Conodonts	Undetermined
PC17-11 850'	Conodonts	not analyzed
Outcrop sample	ıs.	
ID	Age (narrowest age i	result listed)
	g. (

ID	Age (narrowest age result listed)
FS-07	Middle Pennsylvanian to Early Permian (Desmoinesian to Asselian)
FS-08	Pennsylvanian to Permian
FS-09	Pennsylvanian (Morrowan to Virgilian)
FS-10	Early Permian, Early Guadalupian (Wordian-Roadian)
FS-11	Early-Middle Pennsylvanian; Morrowan-Atokan
FS-12	Early Pennsylvanian (Morrowan) to earliest Permian?
Core samples	
PCC17-27 2777'	late Early Permian; Early Leonardian to possibly middle Leonardian

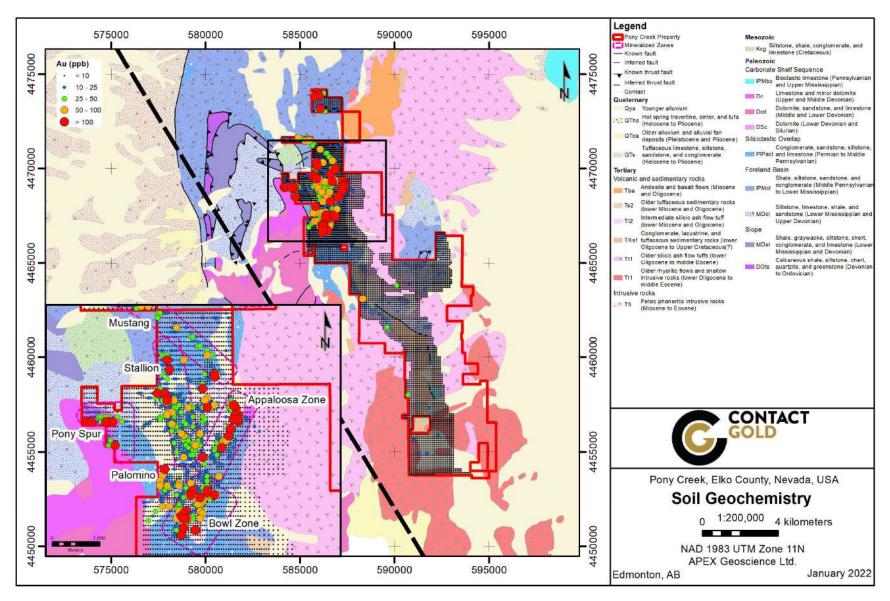
PCC17-27 2854.5' late Early Permian; Late Wolfcampian or younger

Figure 9.2. Location map of samples taken for micropaleontology analysis in coordinate system UTM Zone 11 NAD 83 (from Spalding, 2018). The corresponding geological legend is presented above in Table 9.1.

9.2 Surface Geochemistry

Surface geochemical sampling programs in 2017-2019 consisted of rock and soil sampling at Pony Creek. As of the effective date of this Technical Report, Contact Gold has collected and assayed 7,118 soil samples and 441 rock grab/channel samples within the Property.

9.2.1 Soil Sampling


In 2017, soil samples were collected at 50 m (164 ft) spacings along east-west oriented lines spaced 100 m (328 ft) apart in priority target areas and at 100 m (328 ft) spacings along areas with less potential. The tighter soil grid extended from south of the Bowl Zone to the north of the claim boundary and eastward to the contact with the post-mineral volcanics. The 100 m (328 ft) spaced soil grid extended along the western Property boundary 4.5 km (2.8 mi) southeast of the Bowl Zone. The 2018 soil program added 50 m (164 ft) infills to the best gold intercepts from the 2017 sampling campaign, completed 100m (328 ft) sampling on the rest of Pony Creek interests, and filled-in southward continuation of mineralization trends from Emigrant and Dark Star (Spalding, 2018; Hibdon, 2019a).

The Au-in-soil geochemical results highlighted several anomalous areas in the known mineralized zones of Bowl, Appaloosa and Stallion, and delineated new anomalous target areas, including Elliott Dome, Mustang, Pony Spur, Willow and Palomino. A few minor isolated gold anomalies are present, Au-in-soil results range from less than detection (<1 ppb Au) to maximum values of 1.21 ppm Au and 1.19 ppm Au at the Bowl Zone and Pony Spur, respectively. Strong correlations are noted between Au and arsenic (As), thallium (TI), antimony (Sb), caesium (Cs), and tellurium (Te) in many areas (Hibdon, 2019a). Soil geochemistry was used to target potential gold mineralization in drilling programs from 2017-2019. Gold results from Contact Gold soil surveys are presented in Figure 9.3.

Soil anomalies have been drill-tested in most prospective areas except Elliott Dome, DMZ, Willow and the northwestern portion of the Mustang Target (formerly the Moleen target).

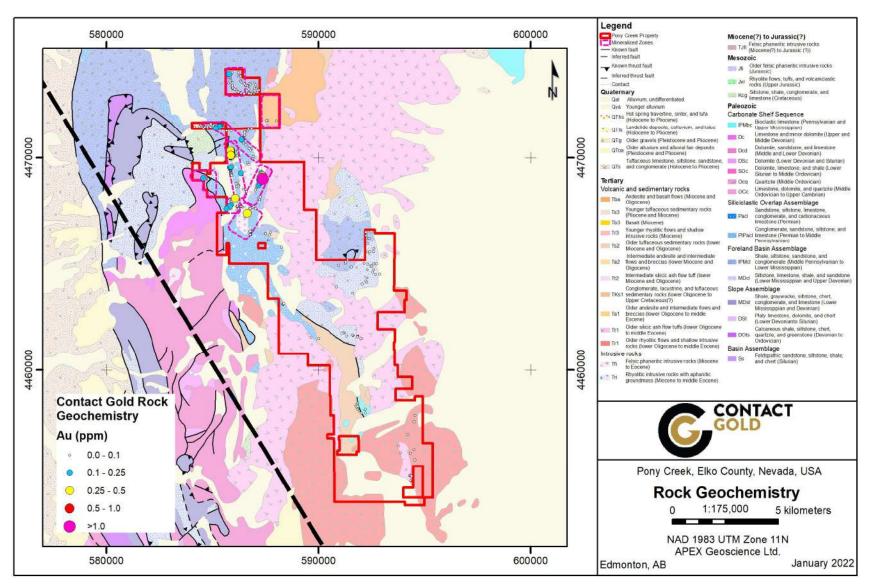
Contact Gold's soil samples comprise between 500 and 1,100 grams of surficial material (soil) and were generally collected at a depth of 25 to 51 cm (10 to 20 inches). The soil profile on the Property is poorly developed and variable, ranging from silty clay in valley bottoms to rocky soil material on ridges. The organic "A" horizon is generally absent to poorly developed in Nevada, and the soil samples were generally collected from the lower "B" horizon.

Figure 9.3. Soil geochemistry (Au) from Contact Gold's 2017-2018 soil sampling programs.

Soil samples were submitted to ALS Chemex (ALS) in Elko, NV, where they were received and weighed. The samples were then shipped to ALS in Reno, NV, where the raw samples were logged into ALS' global tracking system and then screened to 180 µm. Analysis for gold is completed via fire assay with an inductively coupled plasma – atomic emission spectroscopy (ICP-AES) finish on a 30 g aliquot (ALS code Au-ICP21). Sample pulps were then shipped to ALS in North Vancouver, BC, for multielement geochemical analysis using 0.5 g aliquot of the pulp that is analyzed by wet chemical methods that comprise aqua regia acid digestion with an inductively coupled plasma – mass spectrometer (ICP-MS) finish (ALS code ME-MS41).

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

Detailed sampling procedures for Contact Gold's soil sampling programs are available in Section 11 of this Technical Report.


9.2.2 Rock Sampling

Contact Gold has completed rock sampling programs on the Property from 2017-2019. As of the effective date of this Technical Report, 441 grab and channel samples have been collected by Contact Gold within the Pony Creek Property. Rock sampling programs were completed over areas with anomalous gold results from the soil sampling programs. Almost all anomalous rock grab samples were collected in the northwestern portion of Pony Creek in proximity to the Au-in-soil anomalies. The highest grab samples from Pony Creek include 2.71 g/t Au, 0.58 g/t Au, and 0.54 g/t Au from the Appaloosa Zone. Gold assay results from grab samples are noted to be substantially lower than subsurface drilling intercepts below soil anomalies. Most surface outcrops are resistive silicified material, which is lower gold grade than the more recessive high-grade material that is decalcified during weathering (Spalding, 2018). Gold assay results from Contact Gold's rock sampling programs at Pony Creek are shown in Figure 9.4.

Rock grab samples collected at Pony Creek were generally between approximately 1-2 kg in size and collected using a rock hammer. The rock samples were submitted to ALS in Elko, NV, for preparation and then shipped to Reno, NV, or North Vancouver, BC, for analysis. For the 2017 rock samples, gold analysis was completed via fire assay with an atomic absorption spectroscopy (AAS) finish (ALS code Au-AA23) and multielement geochemical analysis was completed using four acid digestion with an ICP-MS finish (ALS code ME-MS61).

For the 2018 and 2019 rock samples, gold analysis was completed via fire assay with either an AAS finish or an atomic emission spectroscopy (AES) finish (ALS codes Au-AA23 or Au-ICP21, respectively). Multielement geochemical analysis was completed using either four acid digestion with an ICP-MS finish (ALS code ME-MS61) or aqua regia with an ICP-MS finish (ALS code ME-MS41). Mercury analysis on select samples was completed using aqua regia and an ICP-MS finish (ALS code Hg-MS42).

Figure 9.4. Grab and chip rock sample geochemistry (Au) from Contact Gold's 2017-2019 rock sampling programs.

Select rock samples from 2017-2019 were analysed using cyanide solubility assays (ALS code Au-AA13) to identify oxide versus sulphide mineralization.

Detailed sampling procedures for Contact Gold's rock sampling programs are available in Section 11 of this Technical Report.

9.3 Geophysics

Contact Gold conducted surface gravity and CSAMT geophysical surveys in the Pony Creek Property area from 2017-2018. The gravity surveys were completed by McGee Geophysical Services and processed by JL Wright Geophysics in 2017 and consisted of a 400 m (0.25 mi) square grid of gravity stations with regional lines that extended along roads at 1 km (0.62 mi) spacing outside of the Property. The goal of the program was to delineate structures, lithologies and alteration potentially related to gold mineralization.

In addition, newly acquired gravity data and historical gravity stations collected from 2001-2006 were merged and processed by J.L. Wright. Several areas of potential alteration were highlighted, and major and minor structures were identified from the processed data as shown in Figure 9.5 (Wright, 2017a).

Later in 2017, the processed gravity data was used to plan a CSAMT survey across the major structures at Pony Creek. The objective of the geophysical program was to define structures, alteration and lithologies potentially related to gold mineralization. The survey was conducted by Zonge International Inc. and the data was processed by JL Wright Geophysics. Several projects had already conducted CSAMT surveys in the area and the historical data was combined with the newly acquired CSAMT data to create a composite interpretation. The 2017 survey consisted of 11 lines with 58.85 line-km (36.57 line-mi). The survey produced 11 inverted resistivity sections, 8 target areas that aligned with known geological controls at the time and two potential mineralization trends (Wright, 2017b). A compilation of the inverted resistivity sections, targets and trends are presented in Figure 9.6.

In 2018, GSV accidentally completed a CSAMT survey across the Elliott Dome, DNZ and Mustang target areas within Contact Gold's Property. The data from the survey was provided to Contact Gold, added to the 2017 and historical CSAMT database, and processed by JL Wright Geophysics. The 2018 survey is 7 lines with approximately 7.4 line-kms (4.60 line-mi) and had the same objectives as the previous CSAMT survey. Processing produced 7 inverted sections that highlight the extension of the Dark Star structural corridor and one potential area of alteration (Wright, 2018). Figure 9.6 shows the inverted sections, extension to the Dark Star Structural zone and the potential alteration target in the Pony Creek area.

Figure 9.5. Processed first vertical derivative gravity map of the Pony Creek Property showing stations, interpreted structures and interpreted alteration zones.

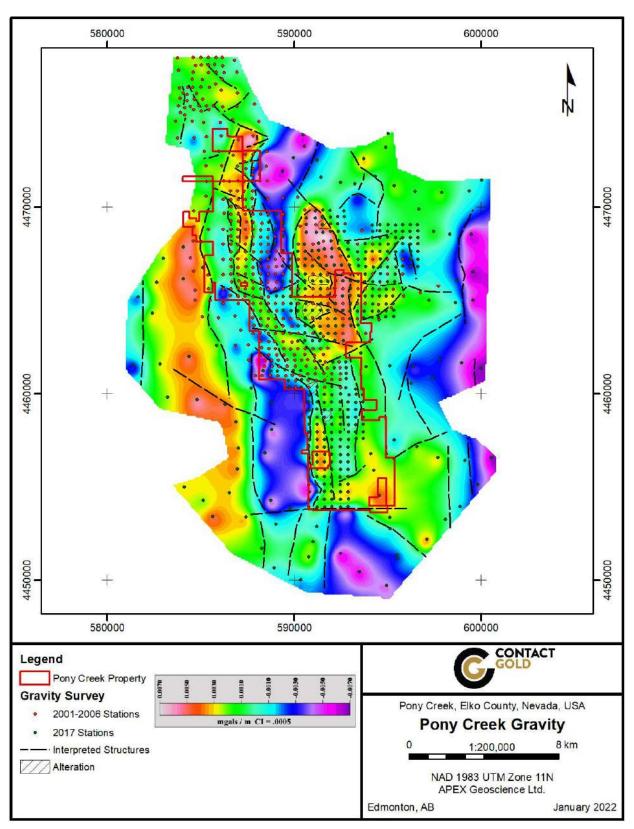
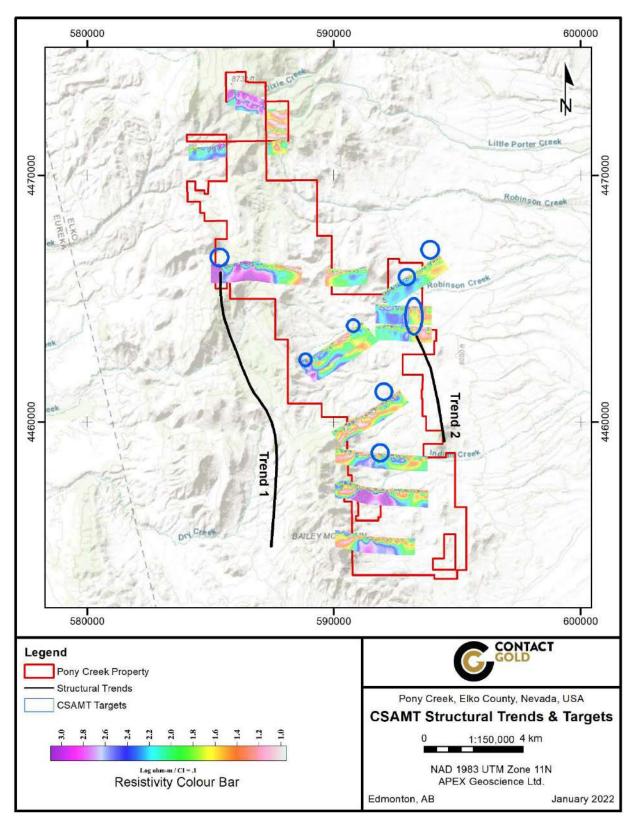
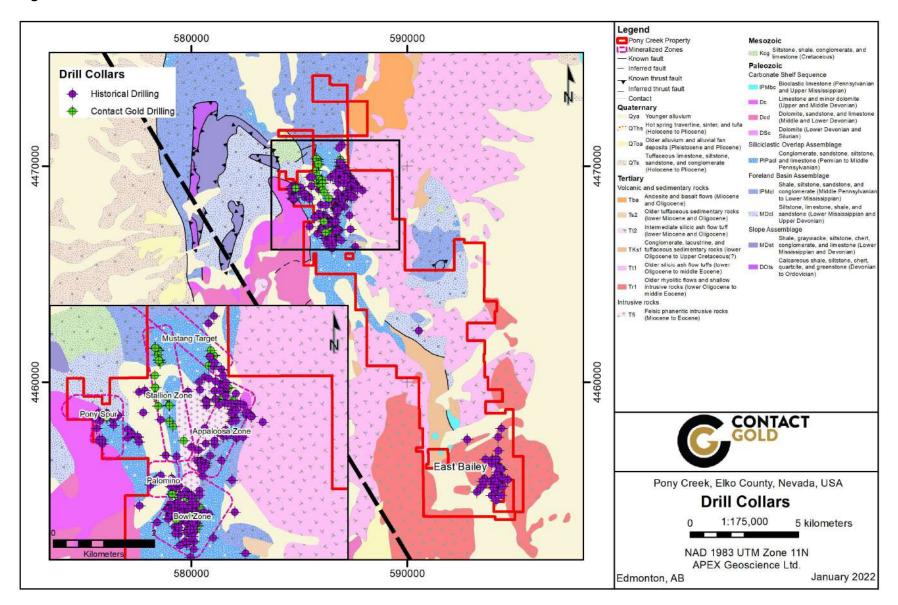



Figure 9.6. CSAMT lines completed at Pony Creek with potential mineralization trends and targets.

10 Drilling

A total of 379 RC and DDH totalling 76,566 m (251,200.8 ft) have been completed at Pony Creek from 1981 to 2019. Of these 379 drillholes, the Issuer has completed 113 RC and 5 DDH, totalling 25,921 m (85,042.7 ft), from 2017 to 2019. The majority of these drill programs have been completed in the northern portion of the Property, with focus on the Bowl Zone, Appaloosa Zone, Stallion Zone and Pony Spur. The drillholes and metreage contained in Contact Gold's database for the Pony Creek Property are presented in Table 10.1 and collar locations are illustrated in Figure 10.1.


Table 10.1. Drillholes contained within Contact Gold's database for the Pony Creek Property (1981-2019)

Company	Year	RC Holes	RC (m)	RC (ft)	Core Holes	Core (m)	Core (ft)	Total Holes	Total (m)	Total (ft)
Newmont	1981-1985, 1987-1989, 1997-1998	137	21,741	71,329	2	560	1,837	139	22,301	73,166
NERCO	1985	6	519	1,703				6	519	1,703
US Borax	1988-1989	18	2,572	8,438				18	2,572	8,438
Westmont-Newmont JV	1991-1992	34	5,067	16,624				34	5,067	16,624
Uranerz	1994-1995	15	3,826	12,552				15	3,826	12,552
Barrick	1998	4	972	3,189				4	972	3,189
Homestake	2000	5	1,853	6,079				5	1,853	6,079
Nevada Contact Inc.	2002	8	2,392	7,848				8	2,392	7,848
Grandview-Mill City	2005-2007	13	3,921	12,864	10	4,595	15,075	23	8,516	27,940
AmMex	2007	9	2,627	8,619				9	2,627	8,619
Contact Gold Corp	2017-2019	113	23,135	75,902	5	2,786	9,140	118	25,921	85,043
Total		362	68,625	225,148	17	7,941	26,053	379	76,566	251,201

10.1 Historical Drilling Summary (1981-2007)

A total of 261 historical DDH and RC drillholes, totalling 50,645 m (166,158.1 ft), are reported to have been completed at the Property by various operators from 1981 to 2007. Drilling at Pony Creek has been completed by a several companies, including Newmont, NERCO, US Borax, Westmont, Uranerz, Barrick, Homestake, Nevada Contact Inc., Grandview and AmMex. A detailed discussion of historical drilling completed on the Property and significant results of these drill programs are provided in Section 6.2 of this Technical Report and in previous technical reports on the Property by Abbott (2003), Russell (2006), Dufresne and Schoeman (2014), Gustin (2017) and Spalding (2018).

Figure 10.1. Drill collar locations.

Most of the historical drilling has been completed in the northern portion of the Property, in proximity to Contact Gold's current areas of interest (Figure 10.1). Of the 261 historical drillholes, 66% were drilled vertically (n=171), the inclination of the remainder of the holes ranged from -45 to -80°. The historical RC hole depths ranged from 11 to 610 m (36.1 to 2,001.3 ft) and averaged 178.8 m (586.6 ft). The diamond drillhole depths ranged from 193 to 906 m (633.2 to 2,972.4 ft) and averaged 412.2 m (1,352.4 ft).

The drill programs conducted on the Property by previous explorers identified a widespread, hydrothermal system and delineated a large zone of gold mineralization in the northern portion of the Property measuring approximately 3.9 km (2.4 miles) long by 610 m (2,000 ft) wide on the southern end to 1,463 m (4,800 ft) wide on the north end of the area of interest (Russell, 2006).

APEX personnel utilized a total of 111 historical holes in the estimation of the mineral resources discussed in Section 14 below. This included 67 holes completed on behalf of Newmont in 1981 to 1989, 21 holes completed in the Westmont-Newmont Joint Venture in 1991 and 1992, 6 holes completed on behalf of Uranerz in 1995, 1 hole completed on behalf of Barrick in 1998, 3 holes completed on behalf of Homestake in 2000, 2 holes completed on behalf of Nevada Contact in 2002 and 11 holes completed on behalf of Grandview in 2006 and 2007.

Known information on the procedures, methodologies and results of drilling conducted on the Property from 1981 to 2007 is discussed in previous technical reports written on the Property by Abbott (2003), Russell (2006), Gustin (2017) and Spalding (2018). As expected, there is limited information on the drilling contractors, drill types and sampling methods and downhole surveying used in the historical drill programs conducted prior to the implementation of the standards of NI 43-101. There is no information available regarding the sample preparation procedures used prior to 2000. Lab certificates indicate that samples were processed at Monitor Labs, American Assayers Laboratories, Chemex Labs Inc. and Geochemical Services Inc.

Additional validation and supplementation of the historical data was completed by APEX personnel, under the direct supervision of Mr. Dufresne, during the calculation of the MRE in 2021 and 2022. The historical drilling data used in the Pony Creek Maiden MRE and detailed in Section 14 of this Technical Report, has been deemed in adequate shape and has been accepted by the authors for use herein.

10.2 Contact Gold Drilling Summary (2017-2019)

Drilling conducted by Contact Gold at Pony Creek from 2017 to 2019 focused on the Bowl Zone, with additional drilling completed at the Appaloosa Zone, Stallion Zone, and Mustang and Pony Spur target areas. From 2017-2019, Contact Gold has completed 113 RC drillholes and 5 DDH totalling 25,921 m (85,043 ft) at Pony Creek (Figure 10.1). Of Contact Gold's 118 drillholes, 27% were drilled vertically (n=32), the inclination of the remainder of the holes ranged from -45 to -80°. Contact Gold's RC hole depths ranged from 37 to 439 m (121 to 1,440 ft) and averaged 205 m (673 ft). The DDH depths ranged

from 220 to 978 m (722 to 3,209 ft) and averaged 557 m (1,827 ft). Collar information for Contact Gold's 2017-2019 drill programs is presented in Tables 10.2 to 10.4.

The objectives of Contact Gold's drill programs were to confirm the extents of known mineralization, validate historical drilling intercepts, expand areas of interest, understand the controls on mineralization and test new geophysical and geochemical targets within the Property. Contact Gold's drill programs identified five zones of mineralization at shallow depths primarily hosted within altered and silicified calcareous clastic rocks of the Penn-Perm Moleen Formation and at the Bowl Zone within a Tertiary (or Jurassic) rhyolite (Contact Gold Corp., 2022).

The 2017 drilling was conducted by Major Drilling (Major) of Salt Lake City, Utah, on behalf of Contact Gold, using a Shramm 455 track mounted RC. All RC drilling was wet and utilized a rotary, 16 section pie splitter for sample collection. Pie plates were installed to avoid overfilling and losing sample material, with only one or two left open for sample collection at a time. Major Drilling of Salt Lake City utilized a LF 90 core drill for the core holes. The core drilling was HQ in diameter, with only one hole reduced to NQ due to pullback limitations of the drill. All drill cores were photographed and then sawn in half by Rangefront Consulting in their Elko warehouse with half of the core submitted to ALS Chemex (ALS) for analysis, and the other half of the core kept in storage at Contact Gold's Elko warehouse.

The 2018 and 2019 RC drilling was conducted by Major of Salt Lake City, Utah, on behalf of Contact Gold utilizing a Shramm 455 track mounted drill. All RC drilling was wet and utilized a rotary, 16 section pie splitter for sample collection. Pie plates were installed to avoid overfilling and losing sample material, with only one or two left open for sample collection at a time.

All of Contact Gold's drill collars were surveyed in the field using a high accuracy Trimble GEOXH 6000 handheld GPS unit, with a stated post processing accuracy of 10 to 50 cm (3.9 to 19.7 inches). Contact Gold employees were trained on proper usage of the Trimble GPS and data processing by Elevation Technical Services in Ely, NV.

For Contact Gold's 2017 drill programs, International Directional Services (IDS) of Elko, NV, completed downhole surveys on all RC and DDH holes using a gyro. Single shot REFLEX surveys were taken on the core holes as a check to the gyro surveys, and they compared very well. For the 2018-2019 drill programs, a north seeking gyro was rented from REFLEX and the Major drillers were trained on proper usage at the start of the program. Survey data was collected every 15.2 m (50 ft). IDS conducted check surveys on two of the holes, which showed nearly identical results for downhole deviation to the REFLEX gyro surveys.

Table 10.2. 2017 Contact Gold drillhole collar information.

		Easting (m)	Northing (m)	Elevation	Total Depth	Total Depth			
Hole ID	Drill Type	NAD83Z11	NAD83Z11	(m)	(m)	(ft)	Azimuth	Inclination	Target
PC17-01	RC	586542	4467234	2188	153	502	0	-90	Bowl
PC17-02	RC	586545	4467234	2188	130	427	90	-55	Bowl
PC17-03	RC	586530	4467236	2188	214	702	270	-55	Bowl
PC17-04	RC	586502	4467021	2179	244	801	0	-90	Bowl
PC17-05	RC	586503	4467021	2179	221	725	90	-69	Bowl
PC17-06	RC	586653	4466810	2224	179	587	0	-90	Bowl
PC17-07	RC	586520	4467171	2180	183	600	0	-90	Bowl
PC17-08	RC	586151	4467444	2166	244	801	30	-45	Bowl
PC17-09	RC	586553	4467094	2181	214	702	0	-90	Bowl
PC17-10	RC	586553	4467093	2181	214	702	150	-70	Bowl
PC17-12	RC	586231	4466943	2167	92	302	0	-90	Bowl
PC17-13	RC	586232	4466944	2167	214	702	20	-60	Bowl
PC17-14	RC	586231	4466945	2167	235	771	10	-60	Bowl
PC17-16	RC	586282	4467205	2177	214	702	0	-90	Bowl
PC17-17	RC	586285	4467205	2177	244	801	90	-45	Bowl
PC17-18	RC	586269	4467380	2185	244	801	0	-90	Bowl
PC17-19	RC	586598	4466951	2208	183	600	0	-90	Bowl
PC17-20	RC	586900	4470182	2199	183	600	0	-90	Appaloosa
PC17-21	RC	586900	4470182	2199	183	600	90	-45	Appaloosa
PC17-22	RC	586982	4470198	2220	244	801	0	-90	Appaloosa
PC17-23	RC	586977	4470201	2220	244	801	90	-45	Appaloosa
PC17-25	RC	586976	4470198	2220	244	801	270	-60	Appaloosa
PC17-26	RC	586890	4470182	2199	183	600	270	-60	Appaloosa
PC17-29	RC	586146	4467443	2170	244	801	90	-45	Bowl
PC17-30	RC	586374	4467143	2185	275	902	0	-90	Bowl
PC17-31	RC	586446	4466863	2182	214	702	90	-45	Bowl
PC17-32	RC	587099	4469333	2182	244	801	0	-90	Appaloosa
PC17-33	RC	587271	4469559	2146	244	801	270	-60	Appaloosa
PC17-34	RC	586873	4470001	2243	228	748	90	-45	Appaloosa
PC17-35	RC	586873	4470001	2207	244	801	0	-90	Appaloosa
PC17-37	RC	586613	4466853	2210	153	502	0	-90	Bowl
PC17-38	RC	586140	4467590	2149	244	801	0	-90	Bowl
PC17-39	RC	586462	4466715	2195	153	502	150	-60	Bowl
PC17-40	RC	586188	4467037	2146	122	400	0	-90	Bowl
PC17-41	RC	586185	4467037	2146	183	600	270	-70	Bowl
PC17-42	RC	586190	4467037	2146	122	400	90	-70	Bowl
PC17-43	RC	587356	4469313	2134	244	801	270	-45	Appaloosa
PCC17-11	Core	586499	4467018	2179	612	2,008	90	-65	Bowl
PCC17-15	Core	586235	4466940	2167	732	2,402	70	-45	Bowl
PCC17-24	Core	586504	4467020	2179	220	722	70	-55	Bowl
PCC17-27	Core	586232	4466939	2167	978	3,209	0	-90	Bowl
PCC17-28	Core	586149	4467445	2166	244	801	30	-45	Bowl

Table 10.3. 2018 Contact Gold drillhole collar information.

J <u>.3. 201</u>	3. 2018 Contact Gold drillhole collar information.										
Hole ID	Drill Type	Easting (m) NAD83Z11	Northing (m) NAD83Z11	Elevation (m)	Total Depth (m)	Total Depth (ft)	Azimuth	Inclination	Target		
PC18-01	RC	586185	4467038	2146	214	702	340		Bowl		
PC18-02	RC	586183	4467034	2146	154	505	270		Bowl		
PC18-03	RC	586186	4467035	2146	194	636	15		Bowl		
PC18-04	RC	586192	4467034	2146	179	587	90		Bowl		
PC18-05	RC	586188	4467030	2146	244	801	195		Bowl		
PC18-06	RC	586516	4467168	2180	264	866	195		Bowl		
PC18-07	RC	586273	4467379	2183	307	1,007	90		Bowl		
PC18-08	RC	586150	4467446	2166	319	1,007	0		Bowl		
PC18-09	RC	586148	4467444	2166	214	702	220		Bowl		
PC18-10	RC	586152	4467445	2166	221	702	155		Bowl		
PC18-11	RC	586433	4467374	2224	37	121	0		Bowl		
PC18-12	RC	586502	4467416	2221	171	561	255		Bowl		
PC18-13	RC	586686	4467193	2213	183	600	270		Bowl		
PC18-14	RC	586688	4467193	2213	209	686	0		Bowl		
PC18-15	RC	585807	4469806	2114	142	466	0		Stallion		
			4469199	2235	289	948	90		Stallion		
PC18-16 PC18-17	RC	585874									
	RC	585871	4469198	2235	183	600	0		Stallion		
PC18-18	RC	585841	4469408	2259	240	787	90		Stallion		
PC18-19	RC	585838	4469408	2259	186	610	0		Stallion		
PC18-20	RC RC	585831	4469408	2259	191	627	270		Stallion		
PC18-21	RC	585818	4469563	2235	214	702	90		Stallion		
PC18-22	RC	585815	4469564	2235	153	502	0		Stallion		
PC18-23	RC	585913	4470056	2159	298	978	90		Stallion		
PC18-24	RC	585910	4470056	2163	185	607	0		Stallion		
PC18-25	RC	584858	4468973	2038	179	587	80		PonySpur		
PC18-26	RC	584855	4468972	2039	118	387	0		PonySpur		
PC18-27	RC	584848	4468976	2038	139	456	280		PonySpur		
PC18-28	RC	586266	4467270	2185	404	1,325	90		Bowl		
PC18-29	RC	586257	4467269	2185	244	801	270		Bowl		
PC18-30	RC	586652	4467387	2240	356	1,168	90		Bowl		
PC18-31	RC	586498	4467418	2191	439	1,440	300		Bowl		
PC18-32	RC	586503	4467415	2191	266	873	195		Bowl		
PC18-33	RC	586229	4467155	2167	362	1,188	90		Bowl		
PC18-34	RC	586227	4467155	2167	243	797	070		Bowl		
PC18-35	RC	586222	4467156	2167	362	1,188	270		Bowl		
PC18-36	RC	586051	4469376		193	633	270		Stallion		
PC18-37	RC RC	586055	4469376	2314	81	266	0		Stallion		
PC18-38	RC	586060	4469376	2314	202	663	90		Stallion		
PC18-39	RC	586093	4469219	2324	153	502	0		Stallion		
PC18-40	RC RC	586089	4469219		174	571	270		Stallion		
PC18-41	RC	586095	4469211	2324	319	1,047	90		Stallion		
PC18-42	RC	586103	4468900	2294	49	161	270		Stallion		
PC18-43	RC	586168	4468792	2290	203	666	130		Stallion		
PC18-44	RC	586380	4468504	2263	275	902	95		Appaloosa		
PC18-45	RC	586620	4466736	2225	130	427	0		Bowl		
PC18-46	RC	586660	4466820	2218	153	502	270		Bowl		
PC18-47	RC RC	586603	4466885	2227	215	705	0		Bowl		
PC18-48	RC	585876	4470311	2202	167	548	45		Stallion		
PC18-49	RC	585875	4470300	2202	148	486	150		Stallion		
PC18-50	RC	585816		2210	161	528	115		Stallion		
PC18-51	RC	585893	4470108	2185	124	407	90	-45	Stallion		

Table 10.4, 2019 Contact Gold drillhole collar information.

		Easting (m)	Northing (m)	Elevation	Total Depth	Total Depth			
Hole ID	Drill Type	NAD83Z11	NAD83Z11	(m)	(m)	(ft)	Azimuth	Inclination	Target
PC19-01	RC	586187	4467041	2160	183	600	335	-45	Bowl
PC19-02	RC	586192	4467039	2146	183	600	25	-45	Bowl
PC19-03	RC	586190	4467036	2146	183	600	50	-45	Bowl
PC19-04	RC	586191	4467037	2161	366	1201	70	-50	Bowl
PC19-05	RC	586282	4467204	2179	366	1201	80	-75	Bowl
PC19-06	RC	586283	4467205	2179	275	902	70	-60	Bowl
PC19-07	RC	586222	4467156	2168	404	1325	90	-72	Bowl
PC19-08	RC	586222	4467156	2168	183	600	280	-75	Bowl
PC19-09	RC	586265	4467273	2181	183	600	70	-50	Bowl
PC19-10	RC	586268	4467375	2186	183	600	160	-60	Bowl
PC19-11	RC	586537	4467240	2197	153	502	359	-45	Bowl
PC19-12	RC	586533	4467240	2197	153	502	320	-45	Bowl
PC19-13	RC	586500	4467422	2220	81	266	315	-45	Bowl
PC19-14	RC	586500	4467424	2220	80	262	320	-45	Bowl
PC19-15	RC	587015	4469322	2189	203	666	15	-65	Appaloosa
PC19-16	RC	587016	4469325	2187	197	646	15	-45	Appaloosa
PC19-17	RC	587013	4469320	2191	203	666	190	-70	Appaloosa
PC19-18	RC	587013	4469318	2192	264	866	190	-45	Appaloosa
PC19-19	RC	586917	4470298	2218	87	285	90	-80	Appaloosa
PC19-20	RC	585861	4470213	2169	153	502	90	-45	Stallion
PC19-21	RC	585807	4470351	2206	93	305	320	-45	Stallion
PC19-22	RC	585814	4470349	2206	100	328	60	-45	Stallion
PC19-23	RC	585892	4470106	2153	122	400	110	-60	Stallion
PC19-24	RC	585892	4470113	2153	122	400	60	-45	Stallion
PC19-25	RC	585882	4470110	2153	148	486	270	-45	Stallion

All 2017-2019 Contact Gold's RC and core samples were assayed by ALS using standard preparation. The samples were crushed to 70% at - 2mm. The crushed material was riffle split to obtain a 1.0kg split, which was then ring-pulverized to 85% at -75 μ m. These pulps were then shipped to ALS in either Reno, NV, or in North Vancouver, BC, for assaying.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

10.2.1 Bowl Zone

The Bowl Zone has been the primary focus of exploration at Pony Creek, with 70 holes totalling 16,978 m (55,702.1 ft) drilled at the Bowl Zone on behalf of the Issuer from 2017-2019. The drillholes were designed to confirm and expand areas of mineralization intersected in historical holes, to gather cyanide solubility data to eventually develop an oxide model to target higher grade and better oxidized portions of the Bowl mineralization,

to gather additional information on ore controls and to test the contact of the Devil's Gate Formation with the Webb Formation beneath the high-grade portion of the Bowl Zone.

In 2017, Contact Gold completed 31 drillholes, totalling 7,918 m (25,977.7 ft) at the Bowl Zone. The drillholes were designed as infill to confirm mineralized areas in historic drilling, and as step outs, generally within 50 m (164 ft) of historical holes. Two holes, PC17-007 and PC17-017, had step out distances of 100 m (328.1 ft).

In 2018, Contact Gold completed 25 drillholes, totalling 6,084 m (19,960.6 ft) at the Bowl Zone. The drillholes were designed to add oxide mineralization to the Bowl Zone and referenced new information on mapped geological structures, three-dimensional modelling of gravity and CSAMT data and Au-in-soil anomalies of up to 0.284 g/t Au from Contact Gold's 2017 exploration program (Contact Gold Corp., 2018b).

In 2019, Contact Gold completed 14 drillholes, totalling 2,976 m (9,763.8 ft) at the Bowl Zone. The objective of the 2019 drill program was to extend the high-grade mineralized oxide zone identified at the Bowl Zone in 2018 and to expand the mineralized footprint to the north toward the Stallion Zone. Two of the 14 holes drilled at the Bowl Zone did not intersect their target depth due to poor ground conditions.

Contact Gold's drilling at the Bowl Zone intersected high grades of gold mineralization adjacent to and along strike of historical drillholes completed in the Bowl Zone and intersected long intervals of low-grade gold mineralization in several holes. Select drillholes from historical drill programs and Contact Gold's recent drill programs at the Bowl Zone were included in the MRE detailed in Section 14 of this Technical Report. Significant results of Contact Gold's drilling at the Bowl Zone are presented in Table 10.5. A plan map and cross sections of the Bowl Zone are illustrated in Figures 10.2-10.4.

Table 10.5. Significant results of Contact Gold's 2017-2019 drill programs at the Bowl Zone, Pony Creek (modified from Spalding, 2018).

Drilhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au (g/t)	Au (opt)
PC19-01	15.24	50.29	35.05	115	0.43	0.013
including	38.1	41.15	3.05	10	1.8	0.052
	132.59	141.73	9.14	30	0.37	0.011
	150.88	158.5	7.62	25	0.31	0.009
	164.59	173.74	9.14	30	0.6	0.017
including	172.21	175.26	3.05	10	1.09	0.032
PC19-02	45.72	50.29	4.57	15	0.38	0.011
	65.53	97.54	32	105	0.8	0.023
including	79.25	92.97	13.72	45	1.48	0.043
	108.21	123.45	15.24	50	0.37	0.011
PC19-03	64.01	76.2	12.19	40	1.21	0.035
including	70.1	73.15	3.05	10	3.47	0.101
	86.87	103.63	16.76	55	0.88	0.026
including	88.39	92.97	4.57	15	1.87	0.055
	135.64	140.21	4.57	15	1.01	0.029
PC19-04	50.29	73.15	22.86	75	0.58	0.017
including	65.53	70.1	4.57	15	1.46	0.043
	80.77	88.39	7.62	25	1.69	0.049
	96.01	99.06	3.05	10	1.33	0.039
	112.78	138.69	25.91	85	0.71	0.021
including	132.59	138.69	6.1	20	1.75	0.051
PC19-05	92.97	97.54	4.57	15	0.52	0.015
	230.13	262.13	32	105	0.51	0.015
	304.8	330.71	25.91	85	0.37	0.011
Including	312.42	315.47	3.05	10	1.09	0.032
	339.86	365.76	25.91	85	0.35	0.010
PC19-06	102.11	109.73	7.62	25	0.54	0.016
PC19-07	38.1	74.68	36.58	120	0.41	0.012
	121.92	135.64	13.72	45	0.31	0.009
PC19-08	108.21	147.83	39.62	130	0.7	0.020
including	134.11	147.83	13.72	45	1.31	0.038
PC19-09	50.29	100.59	50.29	165	0.37	0.011
	131.07	141.73	10.67	35	0.49	0.014

Drillhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au g/t	Au (opt)
PC19-10	16.76	35.05	18.29	60	0.27	0.008
	92.97	99.06	6.1	20	0.33	0.010
PC19-11	97.54	105.16	7.62	25	0.32	0.009
PC19-12	50.29	62.48	12.19	40	0.94	0.027
Including	53.34	59.44	6.1	20	1.27	0.037
PC18-01	28.96	56.39	27.43	90	0.91	0.027
including	35.05	50.29	15.24	50	1.18	0.034
	92.97	99.06	6.1	20	0.32	0.009
	109.73	117.35	7.62	25	0.42	0.012
	121.92	129.54	7.62	25	0.91	0.027
PC18-02	1.52	60.96	59.44	195	0.53	0.015
PC18-03	38.1	144.78	106.68	350	1.37	0.040
including	86.87	134.11	47.24	155	2.51	0.073
PC18-04	50.29	143.26	92.97	305	1	0.029
including	68.58	74.68	6.1	20	4	0.117
and including	109.73	124.97	15.24	50	1.82	0.053
and including	135.64	138.69	3.05	10	1.61	0.047
PC18-05	22.86	32	9.14	30	0.33	0.010
	85.35	88.39	3.05	10	1.08	0.031
PC18-06	129.54	164.59	35.05	115	0.35	0.010
including	155.45	164.59	9.14	30	0.29	0.008
PC18-07	149.35	156.97	7.62	25	0.31	0.009
	173.74	176.79	3.05	10	0.31	0.009
PC18-12	103.63	124.97	21.34	70	0.61	0.018
PC18-28	88.39	92.97	4.57	15	0.33	0.010
	100.59	149.36	48.77	160	0.64	0.019
	364.24	367.29	3.05	10	0.45	0.013
PC18-29	88.39	123.45	35.05	115	0.34	0.010
	129.54	164.59	35.05	115	0.31	0.009
PC18-31	92.97	128.02	35.05	115	0.57	0.017
including	99.06	103.63	4.57	15	1.77	0.052
	149.35	163.07	13.72	45	0.38	0.011

Drillhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au g/t	Au (opt)
PC18-32	224.03	227.08	3.05	10	0.35	0.010
	256.04	262.13	6.1	20	0.34	0.010
PC18-33	41.15	92.97	51.82	170	0.31	0.009
	243.84	252.99	9.14	30	0.73	0.021
	266.7	301.76	35.05	115	2.42	0.071
including	274.32	298.71	24.38	80	3.15	0.092
	312.42	347.48	35.05	115	0.32	0.009
PC18-34	83.82	91.44	7.62	25	1.58	0.046
including	85.35	88.39	3.05	10	3.09	0.090
	105.16	131.07	25.91	85	0.55	0.016
PC18-35	121.92	141.73	19.81	65	0.71	0.021
including	134.11	137.16	3.05	10	1.24	0.036
PC17-18	13.72	28.96	15.24	50	0.21	0.006
	57.91	77.72	19.81	65	0.24	0.007
	97.54	115.83	18.29	60	0.3	0.009
PC17-19	92.97	102.11	9.14	30	0.52	0.015
	149.35	153.93	4.57	15	1.75	0.051
	160.02	166.12	6.1	20	3.95	0.115
	172.21	175.26	3.05	10	0.56	0.016
PCC17-15	0	14.02	14.02	46	0.19	0.006
	108.36	114.76	6.4	21	0.43	0.013
	132.28	146.61	14.33	47	0.2	0.006
PCC17-11	109.42	128.02	18.59	61	0.26	0.008
	135.64	159.41	23.77	78	0.23	0.007
PC17-29	51.82	60.96	9.14	30	0.32	0.009
	70.1	96.01	25.91	85	0.18	0.005
	102.11	117.35	15.24	50	0.48	0.014
	193.55	214.89	21.34	70	0.44	0.013
	220.98	243.84	22.86	75	0.37	0.011
PC17-30	64.01	97.54	33.53	110	0.24	0.007
	143.26	147.83	4.57	15	0.37	0.011
	207.27	236.22	28.96	95	0.22	0.006
PC17-37	51.82	163.07	7.62	25	0.35	0.010

Drillhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au g/t	Au (opt)
PC17-38	39.62	42.67	3.05	10	0.31	0.009
PC17-40	64.01	86.87	22.86	75	2.12	0.062
including	65.53	74.68	9.14	30	4.53	0.132
PC17-41	15.24	18.29	3.05	10	0.25	0.007
	25.91	57.91	32	105	0.59	0.017
PC17-42	60.96	70.1	9.14	30	1.06	0.031
PCC17-28	39.62	42.67	3.05	10	0.15	0.004
	57.91	64.01	6.1	20	0.17	0.005
	106.68	109.73	3.05	10	0.21	0.006
	115.83	118.87	3.05	10	0.23	0.007
	123.45	126.49	3.05	10	0.18	0.005
	134.11	137.16	3.05	10	0.15	0.004
	199.65	205.74	6.1	20	1.88	0.055

^{*}The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

Figure 10.2. Plan map of drilling and gold intercepts at the Bowl Zone.

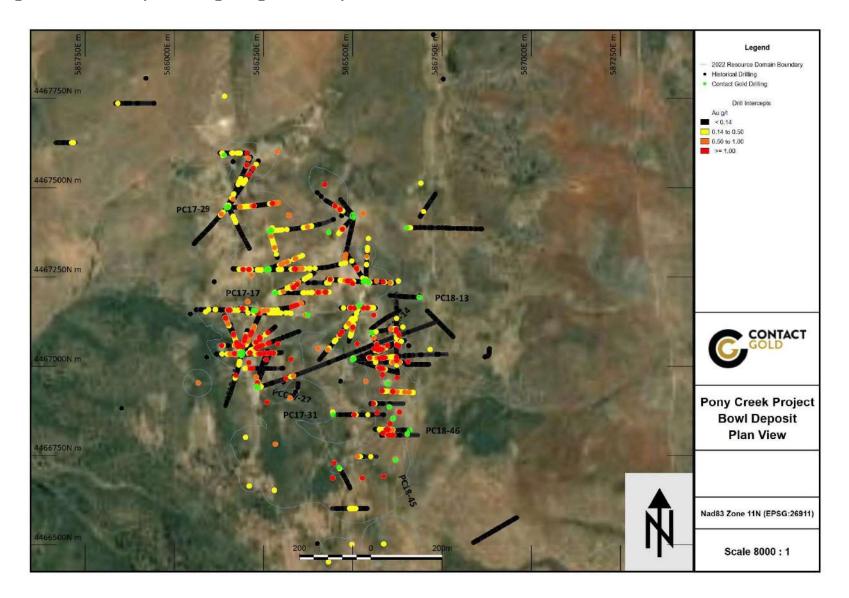


Figure 10.3. Cross section of the Bowl Zone looking east, 586250 m E.

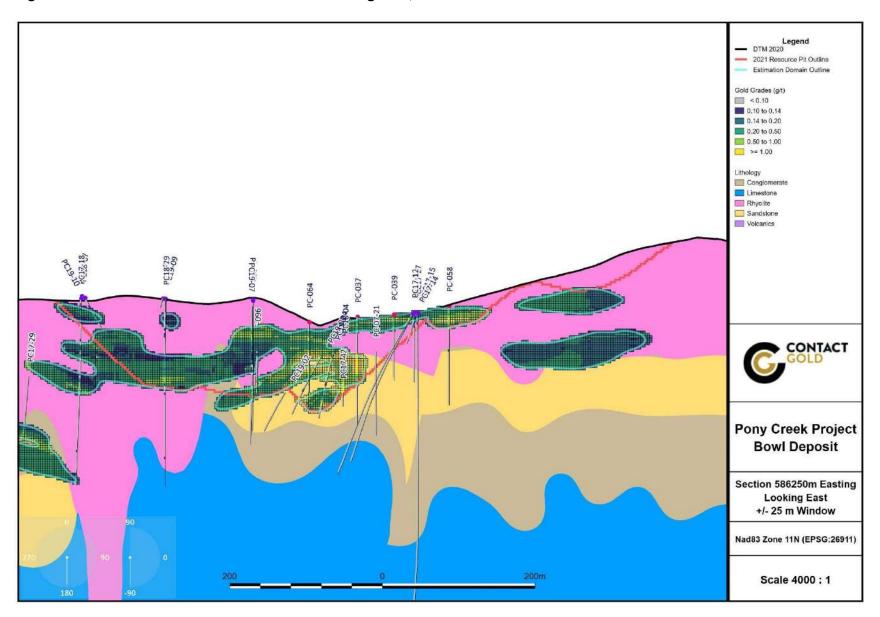
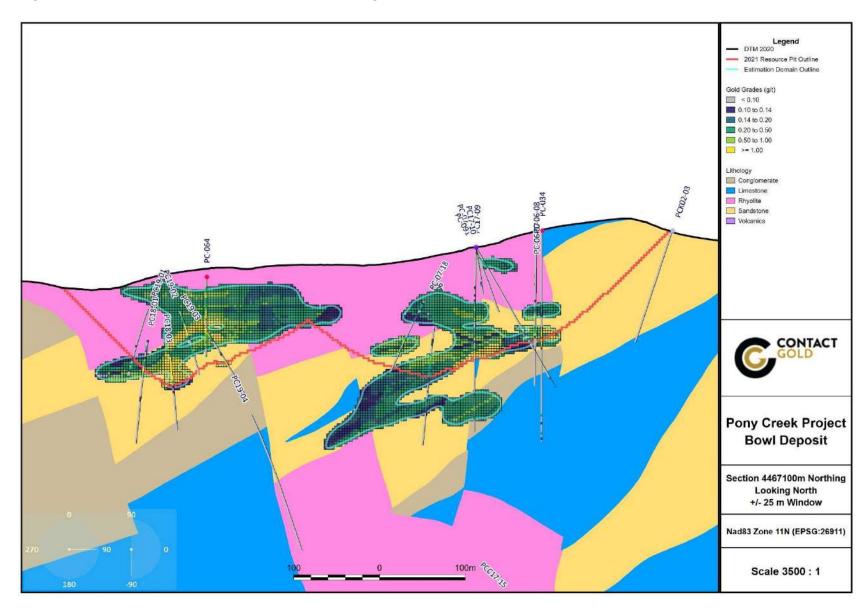



Figure 10.4. Cross section of the Bowl Zone looking north, 4467100 m N.

10.2.2 Stallion Zone

Contact Gold has drilled 28 holes, totalling 4,793 m (15,725 ft) at the Stallion Zone, which is located approximately 1 km (0.6 miles) to the north of the Bowl Zone. The Stallion Zone was formerly known by Contact Gold as the West Target. The West Target was generated by Contact in 2017 based on a 2-km trend of north-south structurally controlled gravity and CSAMT geophysical anomalies and Au-in-soil anomalies cutting Penn-Perm Strathearn Formation clastic and carbonate rocks.

In 2018, Contact Gold completed 22 drillholes, totalling 4,055 m (13,303.8 ft) at the Stallion Zone. The Company intersected shallow oxide gold mineralization, with discovery RC drillhole PC18-18 returning 0.42 g/t Au over 33.53 m (110 ft) length from 4.57 m (15 ft) depth. The 2018 drill program at the Stallion Zone delineated shallow oxide gold mineralization over a strike length of 1 km (0.6 miles).

In 2019, Contact Gold was unable to build any new roads and was only able to drill 6 additional holes, totalling 738 m (2,421.3 ft) at the Stallion Zone. Low-grade gold mineralization was intersected in all 6 drillholes and the 2019 drill program extended oxide gold mineralization 50 m (164 ft) to the north (Contact Gold Corp., 2019c).

Gold mineralization at the Stallion Zone is associated with a large silicified, north-striking rib of Penn-Perm aged calcareous conglomerate, interpreted by Spalding (2018) as the same host as GSV's North Dark Star deposit to the north of the Property. Gold grades are enhanced where multiple cross cutting northwest and northeast striking faults intersect the north-south conglomerate ridge that occupies the Emigrant-Dark Star-Dixie-Bowl Zone structural corridor (Spalding, 2018).

As presently defined by drilling, mineralization at the Stallion Zone has been intersected over a north-south strike length of approximately 1,430 m, with maximum east-west extents of 769 m. The mineralization at the Stallion Zone is open in all directions.

Contact Gold's recent drilling at the Stallion Zone was used in the MRE detailed in Section 14 of this Technical Report. Significant results of Contact Gold's drilling at the Stallion Zone are listed in Table 10.6. A plan map and cross sections of the Stallion Zone are illustrated in Figures 10.5-10.7.

Table 10.6. Significant results of Contact Gold's 2018-2019 drill programs at the Stallion Zone, Pony Creek Property (modified from Spalding, 2018).

Drilhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au (g/t)	Au (opt)
PC19-21	0.00	68.58	68.58	225	0.25	0.007
PC19-23	0.00	68.58	68.58	225	0.29	0.008
PC19-24	0.00	64.01	64.01	210	0.35	0.010
including	41.15	42.67	1.52	5	1.25	0.036
PC19-25	0.00	60.96	60.96	200	0.30	0.009
	96.01	106.68	10.67	35	0.32	0.009
PC18-15	1.52	4.57	3.05	10	0.21	0.006
PC18-16	230.13	23.17	3.05	10	0.26	0.008
PC18-17	13.72	25.91	12.19	40	0.18	0.005
	91.44	94.49	3.05	10	0.18	0.005
	106.68	111.25	4.57	15	0.34	0.010
PC18-18	4.57	38.10	33.53	110	0.42	0.012
PC18-19	73.15	76.20	3.05	10	0.28	0.008
PC18-20	169.17	185.93	16.76	55	0.19	0.006
PC18-21	10.67	19.81	10.67	35	0.34	0.010
PC18-22	19.81	30.48	10.67	35	0.71	0.021
PC18-23	10.67	25.91	15.24	50	0.29	0.008
	39.62	47.24	7.62	25	0.24	0.007
	64.01	96.01	32.00	105	0.22	0.006
PC18-24	1.52	18.29	16.76	55	0.28	0.008
PC18-40	0	6.1	6.1	20	0.7	0.020
PC18-51	0	92.97	92.97	305	0.33	0.010

^{*}The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

Figure 10.5. Plan map of drilling and gold intercepts at the Stallion Zone.

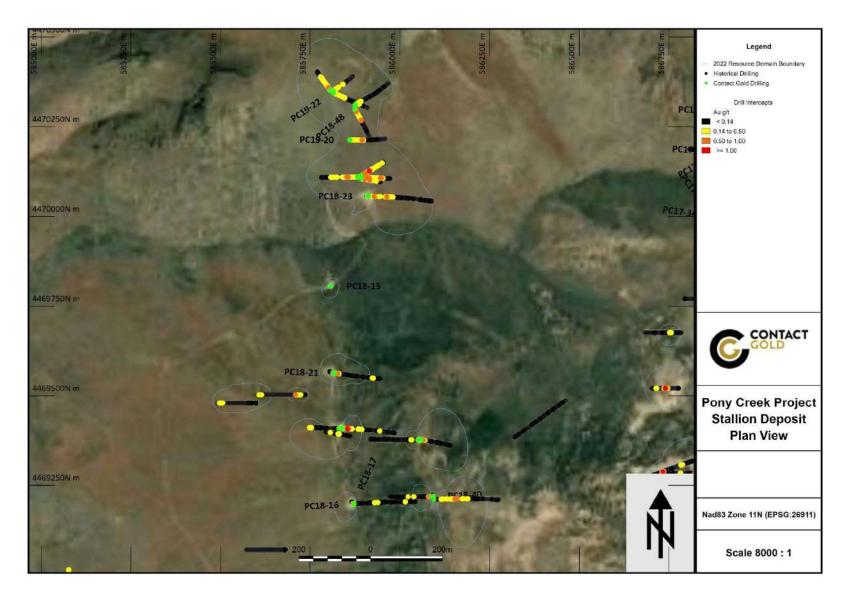


Figure 10.6. Cross section of the North Stallion Zone looking east, 585890 m E.

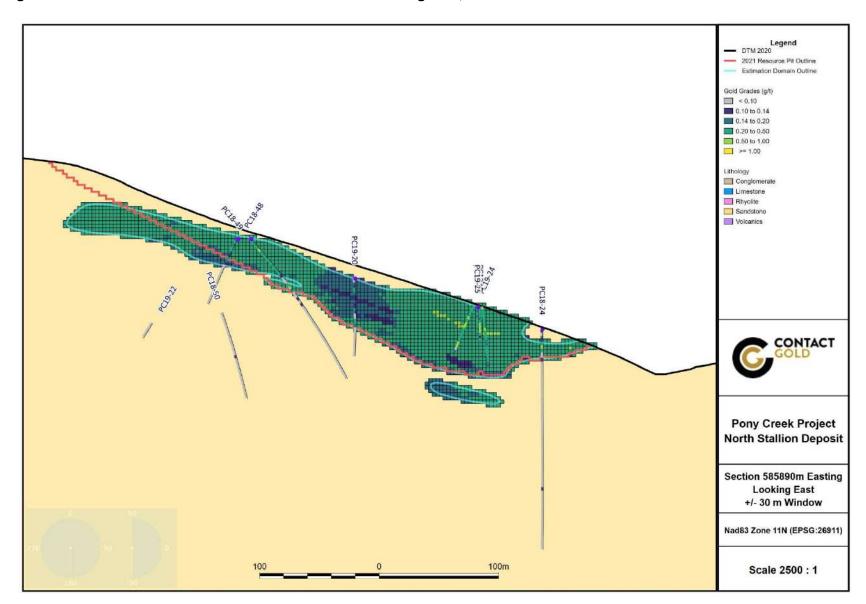
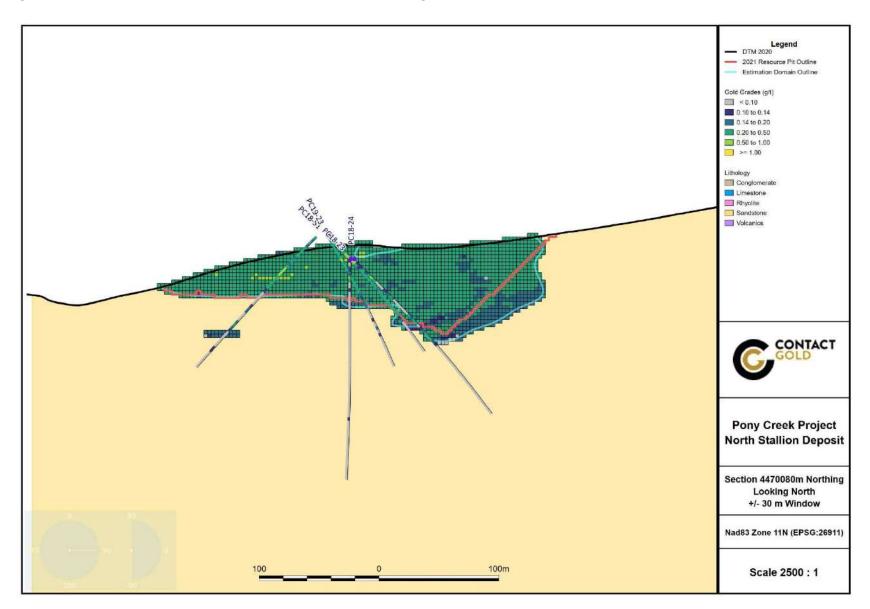



Figure 10.7. Cross section of the North Stallion Zone looking north, 4470080 m N.

10.2.3 Appaloosa Zone

From 2017-2019, Contact Gold drilled 17 holes, totalling 3,714 m (12,185 ft) at the Appaloosa Zone, which is situated approximately 1.2 km (0.75 miles) northeast of the Bowl Zone. The Appaloosa Zone was formerly known by Contact Gold as the North Zone.

In 2017, Contact Gold drilled 11 RC holes, totalling 2,485 m (8,152.9 ft) at the Appaloosa Zone. The 2017 drillholes were designed as offsets of historical mineralized holes, particularly Westmont's drillhole PC-129. PC-129 tested the possible northern extension of the eastern north-trending zone as it projects beyond the limits of the rhyolite intrusion and intersected 42.7 m (140 ft) length of 0.47 g/t (0.014 opt) Au from 26 m (85 ft) depth. Drillhole PC-130 was drilled to the north of PC-129 and intersected a large void that is indicative of a targeted fault. Contact Gold's 2017 drill program encountered significant near surface oxidized and partially oxidized gold mineralization over a 1 km (0.6 mile) strike length.

In 2019, Contact Gold drilled 5 RC holes, totalling 954 m (3,129.9 ft) at the Appaloosa Zone. Four of the drillholes were designed as offsets to target the extension of two historical high-grade gold intercepts: 38.1 m (125 ft) of 0.91 g/t (0.027 opt) Au in drillhole PC-06-03 and 36.5 m (120 ft) of 0.92 g/t (0.027 opt) Au in drillhole 95-08 (Contact Gold Corp., 2019a). The 2019 drill program extended gold mineralization to the north and south of known mineralization intersected in historical drilling with a near surface oxide gold corridor extending over 1.6 km (1 mile) in length (Contact Gold Corp., 2019a). Drillhole PC19-19 was lost above target depth due to poor ground conditions.

Contact Gold's recent drill programs have intersected mineralization at the Appaloosa Zone over an area measuring approximately 1,400 m (4,593 ft) in length and 1,050 m (3,445 ft) in width. The most continuous mineralization identified to date in this area occurs within two north-trending zones that occur within a larger northwest-trending zone of generally lower-grade and more erratically distributed mineralization. Gold mineralization at the Appaloosa Zone is concentrated at the contact between a flat lying to sub-horizontal sandstone unit and a rhyolite cap, near an overturned fold hinge. The mineralization at the Appaloosa Zone is open in all directions.

Select drillholes from historical drill programs and Contact Gold's recent drill programs at the Appaloosa Zone were included in the Maiden Mineral Resource Estimate detailed in Section 14 of this Technical Report. Significant results of Contact Gold's drilling at the Appaloosa Zone are listed in Table 10.7. A plan map and cross sections of the Appaloosa Zone are illustrated in Figures 10.8-10.10.

Table 10.7. Significant results of Contact Gold's 2018-2019 drill programs at the Appaloosa Zone, Pony Creek (modified from Spalding, 2018).

Drilhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au (g/t)	Au (opt)
PC19-16	83.82	112.78	28.96	95	0.38	0.011
including	89.92	92.97	3.05	10	2.19	0.064
PC19-17	85.35	92.97	7.62	25	0.84	0.024
including	88.39	91.44	3.05	10	1.56	0.045
	106.68	120.40	13.72	45	0.31	0.009
PC17-23	30.48	44.20	13.72	45	0.32	0.009
PC17-22	44.20	47.24	3.05	10	0.26	0.008
PC17-25	35.05	38.10	3.05	10	0.17	0.005
	65.53	68.58	3.05	10	0.15	0.004
	71.63	85.35	13.72	45	0.33	0.010
PC17-20	27.43	32.00	4.57	15	0.31	0.009
	64.01	68.58	4.57	15	0.72	0.021
PC17-21	12.19	19.81	7.62	25	0.28	0.008
	25.91	70.10	44.20	145	0.34	0.010
	100.59	108.21	7.62	25	0.18	0.005
PC17-26	25.91	35.05	9.14	30	0.33	0.010
	71.63	74.68	3.05	10	0.14	0.004
PC17-32	83.82	86.87	3.05	10	0.14	0.004
PC17-33	35.05	47.24	12.19	40	0.17	0.005
PC17-34	140.21	163.07	22.86	75	0.16	0.005
PC17-43	4.57	19.81	15.24	50	0.33	0.010
	47.24	50.29	3.05	10	0.15	0.004
	126.49	141.73	15.24	50	0.17	0.005

^{*}The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

Figure 10.8. Plan map of drilling and gold intercepts at the Appaloosa Zone.

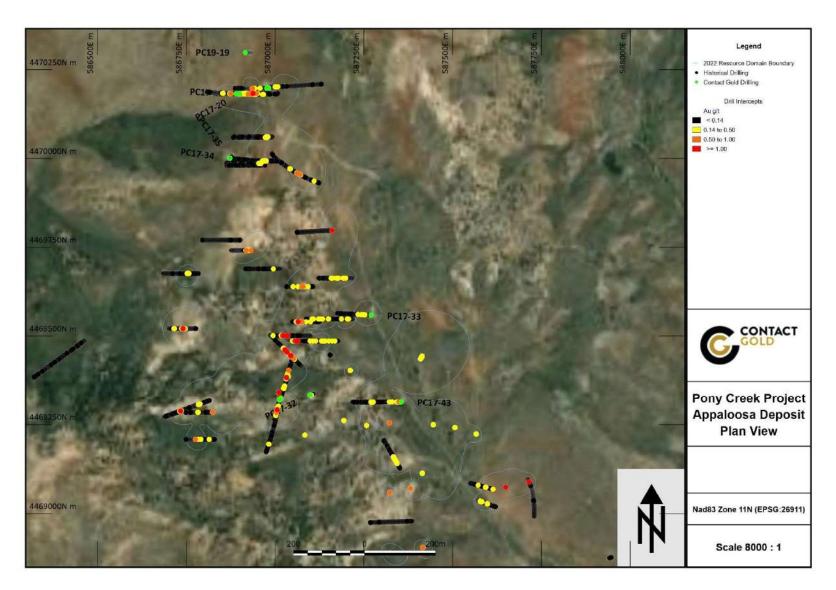


Figure 10.9. Cross section of the Appaloosa Zone looking east, 587020 m E.

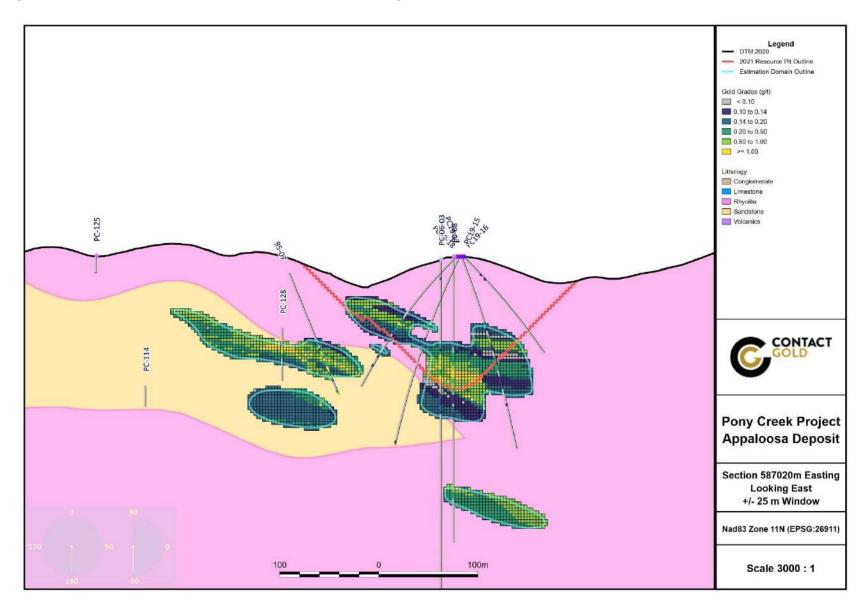
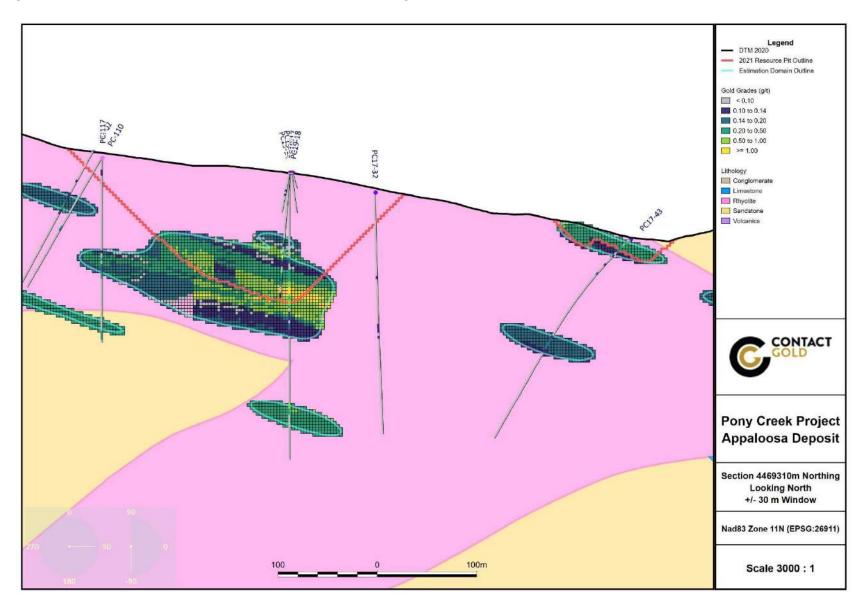



Figure 10.10. Cross section of the Appaloosa Zone looking north, 4469310 m N.

10.2.4 Pony Spur

Contact Gold acquired the Pony Spur target as part of a land expansion of the Pony Creek Property in 2017. The Pony Spur target is located 2 km (1.2 miles) northwest of the Bowl Zone and 1 km (0.6 miles) to the west of the Stallion Zone. Pony Spur is situated along a northwest striking structural zone that projects into the Bowl Zone and into the major southeast flexure in the otherwise north-striking Emigrant/Dark Star/Pony Creek structural zone (Contact Gold Corp., 2018b; Spalding, 2018).

In 2018, Contact Gold completed 3 RC drillholes (PC18-25 to 27), totalling 436 m (1,430.5 ft) at Pony Spur. The three holes were collared within 10 m of each other: PC18-25 was oriented at 80° azimuth and -45° inclination, PC18-26 was drilled vertically and PC18-27 was oriented at 280° azimuth and -45° inclination (Figure 10.11). All three drillholes intersected low-grade gold mineralization with mineralization occurring at the contact of the Devil's Gate Formation with the Webb Formation. Two of the three intercepts were well oxidized with good gold recoveries in cyanide assays.

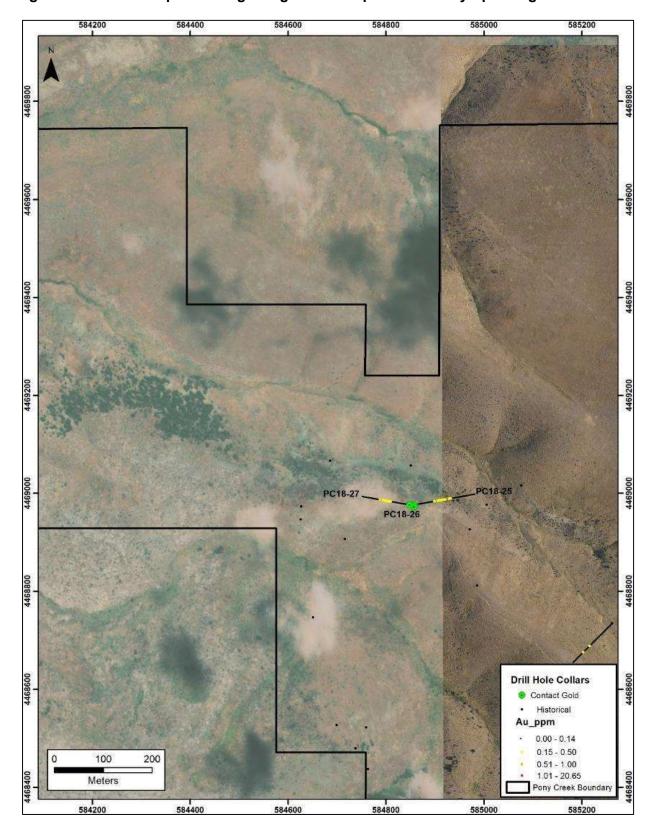

Significant results of Contact Gold's drilling at the Pony Spur target are listed in Table 10.8. A plan map and schematic cross section of Pony Spur are illustrated in Figures 10.11 and 10.12, respectively.

Table 10.8. Significant results of Contact Gold's 2018-2019 drill programs at the Pony Spurtarget, Pony Creek (from Spalding, 2018).

Drilhole	From (m)	To (m)	Interval* (m)	Interval* (ft)	Au (g/t)	Au (opt)
PC18-25	57.91	60.96	3.05	10	0.15	0.004
	70.10	91.44	21.34	70	0.17	0.005
	100.59	105.16	4.57	15	0.22	0.006
PC18-26	65.53	92.97	27.43	90	0.19	0.006
	102.11	106.68	4.57	15	0.17	0.005
PC18-27	53.34	73.15	19.81	65	0.21	0.006

^{*}The true width of mineralized intercepts is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

Figure 10.11. Plan map of drilling and gold intercepts at the Pony Spur target.

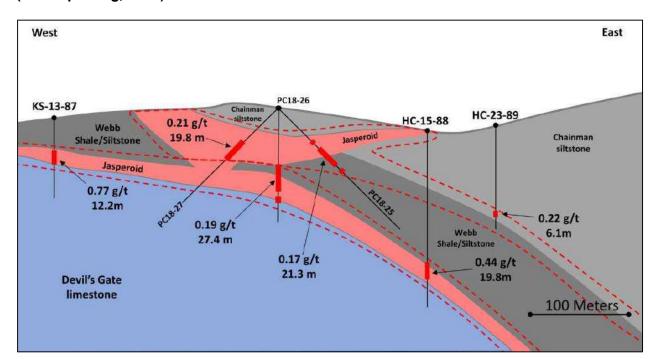


Figure 10.12. East-west schematic cross section of Contact Gold's drilling at Pony Spur (from Spalding, 2018).

11 Sample Preparation, Analyses and Security

A portion of the information presented in following sub-sections has been summarized by previous technical reports on the Property by Dufresne and Schoeman (2014), Gustin (2017) and Spalding (2018). This information has been reviewed and verified and is not relied upon by the authors.

11.1 Historical Exploration (1981-2014)

Several extensive drill programs have been conducted on the Property by previous operators including Newmont, NERCO, US Borax, Westmont, Uranerz, Barrick, Nevada Contact Inc., Homestake, Grandview and AmMex from 1981 to 2007. A total of 261 historical diamond drill core and reverse circulation (RC) drillholes, totalling 50,645 m (166,158.1 ft), are reported to have been completed at the Property by various operators. The target depths ranged from less than 50 m to greater than 900 m (164 to 2,953 ft) below surface. A total of 111 historical holes were utilized in the estimation of the Maiden Mineral Resource Estimate discussed in Section 14 below. This included 67 holes completed on behalf of Newmont in 1981 to 1989, 21 holes completed in the Westmont-Newmont Joint Venture in 1991 and 1992, 6 holes completed on behalf of Uranerz in 1995, 1 hole completed on behalf of Barrick in 1998, 3 holes completed on behalf of Homestake in 2000, 2 holes completed on behalf of Nevada Contact in 2002 and 11 holes completed on behalf of Grandview in 2006 and 2007.

Limited information is available regarding historical drill programs completed at the Property. The following information has been derived by the authors using previous technical reports on the Property by Gustin (2017) and Spalding (2018), and historical information and drill logs provided by the issuer:

- Very limited to no information is available concerning the drilling contractors, drill rig models and drilling methods used during the Newmont and NERCO drill programs from 1981 through 1989. The Newmont drill logs indicate O'Keefe as the drill contractor. The authors reviewed scans of original handwritten logs for Newmont's RC drill programs conducted in from 1982-1989. Log headers include drill types, hole number, hole size, casing depth, bearing, inclination, collar elevation, final depth and start and completion dates. In addition, the logs include fields for rock type, mineralization and alteration.
- Drilling completed on behalf of the Westmont-Newmont Joint Venture in 1991 and 1992 was conducted by Hackworth Drilling of Elko, NV. In 1991, an Ingersoll-Rand PH600 truck-mounted RC drill was used and an MPD 1000 track-mounted drill was used. In 1992, a Schramm C650 track-mounted RC drill was used. No other information is available.
- The authors have been unable to obtain any information on the drilling contractors, drill rig types and drilling methods used during the Uranerz drilling in 1994 and 1995, or the drilling done by Barrick in July 1998. Mr. R.H. Russell, QP and author of the previous technical reports on the Property (Russell, 2004; 2006), observed the drilling and sampling practices of Barrick in 1998 and "found their practices did conform to industry standards" at the time. No further information is available.
- Database files indicate that the Homestake RC drilling was completed in 2000 by Eklund Drilling of Elko, NV, using a track mounted MPD 1,500 drill rig. The authors reviewed original handwritten logs for drillholes completed by Homestake. The drill logs include fields for depth, geological unit, lithology, color, alteration, oxide, sulphide, oxidationreduction and a column for gold assay (opt).
- Drilling on behalf of Nevada Contact was completed using a trackmounted RC rig for most of their 2002 holes, with a truck-mounted TH-75 RC rig used for hole PCK02-06A. The authors reviewed summary logs for drillholes completed by Nevada Contact. The summary logs included sample intervals, lithology description and assays.
- In 2006, Grandview's HQ-diamond core drilling was completed by Boart Longyear. The remaining core from Grandview's drill program was stored in the Waterton storage facility in Lovelock, NV, and has been recovered by Contact Gold. The authors have reviewed original handwritten logs

from Grandview's 2006-2007 drill programs. The logs include fields for depth, recovery, rock quality designation (RQD), lithology, alteration, mineralization, veining and a column for gold assay.

11.1.1 Sample Collection, Preparation and Security

Limited information is available from drill programs regarding dry versus wet RC drilling, potential RC contamination issues or how RC samples were collected and split. Most samples in the drillhole database were collected in 1.524 m (5 ft) down-hole sample lengths; however, in some drillholes long intervals were not sampled and analysed. In 1991, Westmont's RC samples were collected at 1.524 m (5 ft) intervals and split with a Gilson splitter when dry, or a rotating cone splitter when wet. Drillholes completed by Nevada Contact Inc. were collected at 3.05 m (10 ft) intervals. For core holes drilled by Grandview in 2006, the core was sawed in half on 1.524 m (5 ft) sample intervals after being logged and photographed. In the opinion of the authors, based on the current understanding of the Pony Creek mineralization, these sample lengths are appropriate.

Regarding historical surface exploration, GSV's procedure for rock grab and rock "scoop" sampling programs at East Bailey in 2013-2014 is as follows:

The rock grab and rock "scoop" sampling programs were completed by GSV personnel. Individual rock samples were collected in the field by placing approximately 1-2 kg (2-4 lbs) of material in a sample bag. Sample sites were marked with flagging in the field and locations were measured by hand-held GPS that are typically accurate to within +/- 5 m (16.4 ft). Samples were described in the field and all data was transcribed to digital files at the end of each day. The rock "scoop" samples were scooped from the surface with a shovel every meter along continuous traverse lines, generally along topographic contours, and composited in approximately 30 m (98 ft) length sample intervals. At East Bailey the sample lines were generally low on hill sides and above the pediment. Location coordinates for the ends of each sample were recorded on a hand-held GPS unit. Due to down-slope creep and mass wasting, each scoop sample contained mixed material eroding from above the sample site. Geochemical standards and blanks were inserted every 20 samples. Samples were processed as rock chip samples for geochemical analyses. Samples were collected into groups and were bagged for shipment to the laboratory. Samples were either dropped off at the laboratory by GSV or were shipped via commercial carrier. No issues with respect to sample shipment and/or security were noted in Dufresne and Schoeman (2014).

11.1.2 Analytical Procedures

Although hard copy assay certificates exist for most of the pre-2000 drillholes, limited information is available regarding laboratory sample preparation methods and attributes such as assay charge or aliquot size. The assays records do provide basic information on the assay type i.e., fire assay or acid roast.

Early drill programs by Newmont utilized Monitor Geochemical Laboratory of Elko, NV, Geochemical Services Inc., Bondar-Clegg and Barringer Labs. The Uranerz program in 1995 used Assayers Laboratories, and as a check they sent one hole of duplicate material to the precursor to ALS in Elko, NV. Samples collected by Barrick in 1998 used American Assay Laboratories. The assays certificates for both programs provide only basic information about the assay type.

In 2000, Homestake's RC samples were sent to the Bondar Clegg laboratory in Sparks, NV. Gold was determined by fire-assay fusion of 30 g aliquots with an atomic absorption spectroscopy (AAS) finish. Mercury was determined by cold-vapor AAS, and silver plus 35 major, minor and trace elements were determined by inductively coupled plasma-emission spectrometry (ICP) following an aqua regia digestion. It is not known how the samples were prepared for assay.

In 2003, Nevada Contact's RC drill samples were sent to ALS in Elko, NV, for sample preparation. The samples were oven dried, then crushed in their entirety to 70% at -2 mm. The crushed material was riffle split to obtain a 250 g split, which was then ring-pulverized to 85% at -75 µm. These pulps were then shipped to the ALS analytical laboratory in Sparks, NV, or in North Vancouver, British Columbia (BC), Canada for analysis. Gold was determined by fire-assay fusion with an AAS finish using 30g aliquots.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

The following excerpt from Russell (2006) summarizes the sample procedures and analytical practices of the laboratories employed by Newmont, Westmont, Uranerz, Barrick, Homestake and Nevada Contact:

"All the former operators, Newmont, Westmont, Uranerz, Barrick, Homestake, and Nevada Contact used well known commercial assay laboratories. The laboratories did conduct their sample procedures and assay practices according to accepted industry practices. Throughout the years between 1981 and 1993, the same period of time that holes NPC-1 through PC-134 were drilled at Pony Creek, Gold Fields Mining Corporation conducted a comprehensive commercial laboratory check assay program as well as checking selected mining company laboratories, including Newmont Mining. R.H. Russell was employed by Gold Fields during that time and was aware of the results of that check assaying program. Based on the results of that check assay program, all the commercial laboratories in North America used accepted practices for sample security, sample preparation, fire and AA assaying and sample reject and pulp storage."

In 2005 and 2006, Grandview's core samples were sent to ALS in Elko, NV, for sample preparation. The samples were crushed to 70% at -2 mm. The crushed material was riffle split to obtain a 1.0 kg split, which was then ring-pulverized to 85% at -75 μ m. These pulps were then shipped to ALS in Sparks, NV, or in North Vancouver, BC, for analysis. Gold was determined by fire-assay fusion with an AAS finish using 30 g aliquots. Multi-

element analysis of 34 major, minor and trace elements was determined by ICP following an aqua regia digestion.

In 2006, Grandview's rock samples were also prepared at the ALS facility in Elko, NV, using the preparation methods described for the 2005-2006 core samples. The rock sample pulps were analysed at ALS in North Vancouver, BC, for gold by 30 g fire-assay fusion with an AAS finish. Multi-element analysis was completed on separate 1 g aliquots for 47 major, minor and trace elements using a combination of ICP and mass spectrometry (ICP-MS). Mercury was determined by cold-vapor AA.

In 2007, Grandview's RC drill samples were submitted to ALS in Elko, NV. Following sample preparation, the pulps were then shipped to ALS in either Sparks, NV, or in North Vancouver, BC, for analysis. Gold was determined by fire-assay fusion with an AAS finish using 30 g aliquots.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

In 2007, AmMex completed a drill program in the southern portion of the Property. There are no records detailing geological logs or assay information beyond what is contained in the supplied grade databases.

In 2013-2014, GSV's rock grab and rock "scoop" samples were couriered by ALS personnel to ALS in Elko, NV, for preparation. At the ALS preparation facility, the samples were logged into a computer-based tracking system, weighed and dried. The entire sample was crushed so that +70% passes a 6 mm screen, then finely crushed so that +70% passes a 2 mm screen. A 250 g (~0.5 pound) spilt (original pulp) was then selected and pulverized to better than 85% passing a 75-micron screen. From Elko, the pulp samples were shipped to Reno, NV, or Vancouver, BC, for geochemical analysis. A 30 g aliquot was extracted from the pulp and analyzed for gold by fire assay with an AAS finish. Samples were also analyzed for a suite of 30 other "trace elements" by Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES) following *aqua regia* digestion.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

11.1.3 Quality Assurance – Quality Control

The authors are unaware of any available information regarding the Quality Assurance – Quality Control (QA-QC) procedures used by previous explorers prior to 2000.

During the 2000 RC drilling by Homestake, a total of 54 duplicate RC samples were analyzed at Bondar Clegg in Sparks, Nevada. The nature of these duplicate samples is not presently known, and further investigation is needed before meaningful analyses of the data can be completed. Bondar Clegg utilized quality control measures throughout

the sample preparation and analysis process, including the insertion of laboratory duplicates and several different certified reference standards and blanks.

During Grandview's 2006-2007 drilling program, a total of 6 core duplicate samples and 38 RC duplicate samples were analyzed by ALS. ALS utilized quality control measures throughout the sample preparation and analysis process, including the insertion of laboratory duplicates and several different certified reference standards and blanks during the analyses of Grandview's drilling and rock samples from 2005-2007.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

It is not known if QA-QC programs were instituted by the other historical operators at the Pony Creek Property.

11.2 Contact Gold Surface Exploration (2017-2019)

11.2.1 Sample Collection, Preparation and Security

As of the effective date of this Technical Report and within the current Property boundary, Contact Gold has collected and assayed 7,118 soil samples and 441 rock grab/channel samples at Pony Creek. All surface soil and rock sampling were conducted under the supervision of the Company's geologists and the chain of sample custody from the field to the sample preparation facility is continuously monitored.

In 2017, soils were collected at 50 m (164 ft) spacings along east-west oriented lines spaced 100 m (328 ft) apart in priority target areas and at 100 m (328 ft) spacings along areas with less potential. Soils in 2018 consisted of infill soils collected at 50 m (164 ft) spacings in anomalous areas delineated from the 2017 soil sampling campaign, as well as 100 m (328 ft) spaced samples collected on the rest of the Pony Creek Property.

Soils samplers are trained before collecting samples for Contact Gold at Pony Creek. They are instructed to not wear rings, and to work safely. Individual soil samples comprise between 500 and 1,100 grams of surficial material (soil), generally collected at a depth of 25 to 51 cm (10 to 20 inches). The soil profile on the Pony Creek Property is poorly developed and variable, ranging from silty clay in valley bottoms to rocky soil material on ridges. The organic "A" horizon is generally absent to poorly developed in Nevada, and the soil sample is generally collected from the lower "B" horizon. The sample is scooped into a 1 cm (1/4 inch) wire mesh sieve to remove all the coarse material, and sieved onto paper plates, and then poured directly into permeable 5 by 8.5-inch Sentry brand synthetic, breathable bags. Soil samples are located using handheld Garmin GPS unitsgenerally with a 3–4-meter (10-13 ft) accuracy, catalogued and placed in rice sacks that were sealed and shipped to ALS in Elko, NV, or Reno, NV, for geochemical analysis.

Rock grab samples collected at Pony Creek were generally between approximately 1-2 kg in size and collected using a rock hammer. Samplers are instructed not to wear rings,

and to work safely. The sample location is marked with a Garmin handheld GPS unit generally with a 3–4-meter (10-13 ft) accuracy, and a very detailed description entered into a waterproof field notebook including, sample type (i.e., outcrop, subcrop, float, grab, select, high-grade, channel, panel, etc.), color, lithology, alteration and all other pertinent information. All samples were placed in a Sentry brand synthetic, breathable bag with a unique sample number written on them with a permanent felt tip pen and tied closed. The location of the sample was flagged with the unique number on flagging tape and an aluminum tag. The sample site was occasionally photographed with the poly bag and sample in view. Individual rock grab samples were placed into a large rice bag weighing approximately 15 kg. The larger rice bags were secured with zip ties and a security tag and shipped to ALS in Elko, NV, for geochemical analysis.

11.2.2 Analytical Procedures

At ALS in Elko, NV, the 2017-2019 soil samples were received and weighed. The samples were then shipped to ALS in Reno, NV, where the raw samples were logged into ALS' global tracking system and then screened to 180 µm. Analysis for gold was completed via fire assay with an inductively coupled plasma – atomic emission spectroscopy (ICP-AES) finish on a 30 g aliquot (ALS code Au-ICP21). Sample pulps were shipped to ALS in North Vancouver, BC, for multielement geochemical analysis using 0.5 g aliquot of the pulp that is analyzed by wet chemical methods that comprise aqua regia acid digestion with an inductively coupled plasma – mass spectrometer (ICP-MS) finish (ALS code ME-MS41).

At ALS in Elko, NV, the 2017 rock samples were weighed, crushed, screened, split and pulverized. The samples were then shipped to ALS in Reno, NV, or North Vancouver, BC, for geochemical analysis. Samples were crushed and pulverized. 30 g aliquots were analysed for gold via fire assay with an AAS finish (ALS code Au-AA23). Multielement geochemical analysis was completed using four acid digestion with an ICP-MS finish (ALS code ME-MS61). Select samples were analysed using cyanide solubility assays (ALS code Au-AA13) to identify oxide versus sulphide mineralization.

At ALS in Elko, NV, the 2018 and 2019 rock samples were weighed, crushed, screened, split and pulverized. The samples were shipped to ALS, in Reno, Nevada, or North Vancouver, BC, for geochemical analysis. The rock samples were crushed and pulverized and 30 g aliquots were analysed for gold using fire assay with either AAS (ALS code Au-AA23) or AES finish (ALS code Au-ICP21). Multielement geochemical analysis was completed using either four acid digestion with an ICP-MS finish (ALS code ME-MS61) or aqua regia with an ICP-MS finish (ALS code ME-MS41). Mercury analysis on select samples is completed using aqua regia and an ICP-MS finish (ALS code Hg-MS42). Select samples were analysed using cyanide solubility assays (ALS code Au-AA13) to identify oxide versus sulphide mineralization.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

11.2.3 Quality Assurance – Quality Control

No standard reference materials or duplicate samples were inserted into the soil or rock sample sequences during Contact Gold's surface exploration programs due to the extremely low detection limits in elements of interest at the Pony Creek Property.

The authors note that ALS utilizes quality control measures throughout the sample preparation and analysis process, including the insertion of laboratory duplicates and several different certified reference standards and blanks.

11.3 Contact Gold Drill Programs (2017-2019)

11.3.1 Sample Collection, Preparation and Security

From 2017-2019, Contact Gold completed 113 RC drillholes and 5 DDH totalling 25,921 m (85,043 ft) at the Pony Creek Property. Major Drilling of Salt Lake City, Utah, conducted the drilling on behalf of the Company utilizing a Shramm 455 track mounted RC drill and an LF 90 core drill.

Contact Gold's RC drilling was wet and utilized a rotary 16 section pie plate splitter for sample collection on 1.524 m (5 ft) intervals, with great care taken to make sure enough pie plates were installed to avoid overfilling and losing sample. Predominately, only one pie plate was left open for sample collection, and occasionally two pie plates were left open. RC samples were bagged during the drilling and were sent to the lab in bags using sample numbers.

Initially, RC duplicates were collected using a Y splitter attachment on the rotary splitter attached to the drill rig; however, following regular duplicate failures, the Company switched to a riffle splitter to split the single sample into an A and a B sample after the sample interval had been completed drilled. Standard and blank material samples were filled by the geologist and inserted into their relevant sample bins upon submittal to the laboratory. Check samples, in the form of certified reference standards, blanks and duplicates, were inserted regularly but randomly via sample cut sheets created by the geologist and distributed to the RC drill crews. For the 2017 drilling, the average rate of check sample insertion was one sample per every 25 samples. For the 2018 drilling, the rate of check sample insertion was one sample per every 10 samples. For the 2019 drilling, the rate of check sample insertion was one sample per every 12 samples. The Company provided ALS with sample sequence sheets to ensure the check samples would be ran in sequence with the surrounding footages of the drillhole. Additionally, discrete sample numbers were given to each submitted sample in sequence to further disguise the insertion of check samples, hole names and footages of the samples.

Contact Gold's 2017-2019 RC samples were either transported to ALS in Elko, NV, by Contact Gold personnel or picked up by ALS trucks and taken directly to the Elko laboratory.

Almost all of Contact Gold's core drilling was HQ size, although one hole was reduced to NQ due to pullback limitations of the drill. The Contact Gold geologist determined the sample intervals while logging core. Core samples were collected using core runs as sample breaks when possible, although occasionally geological breaks such as alteration, fault zones and intrusive-sedimentary contacts were used. All the drill core was photographed and then sawn in half by Rangefront Consulting ("Rangefront") in their Elko, NV, warehouse using sample interval sheets supplied by the Contact Gold geologist.

The core was split using a core saw with water to create wet sampling conditions. Half of the core was submitted to ALS for analysis. The other half was put back in the core box and retained in a warehouse in Elko, NV. Standard and blank material samples were filled by the Rangefront employees and inserted into their relevant sample bins upon submittal to the laboratory. Duplicates were created using the two halves of sawn core, consuming the entire interval to ensure that sample volumes were identical. For the 2017 drilling, the average rate of check sample insertion was one sample per every 25 samples. Samples were collected by ALS from the Rangefront warehouse and submitted to ALS in Elko, NV, for sample preparation.

11.3.2 Analytical Procedures

All of Contact Gold's 2017-2019 RC and drill core samples were submitted to ALS in Elko, NV. Preparation of the samples was completed at ALS in Elko, NV, or ALS in North Vancouver, BC. The raw samples were logged into ALS' global tracking system, weighed, dried, then crushed to 70% at – 2 mm. The crushed material was then riffle split to obtain a 1.0 kg split, which was then ring-pulverized to 85% at -75 µm. Analysis of the pulps occurred in either Reno, NV, or in North Vancouver, BC. Gold was determined by fire-assay fusion with an AAS finish at a 5-ppb detection limit using 30 g aliquots (ALS code Au-AA23). Composite samples measuring 6.09 m (20 ft) were prepared from four 1.524 m (5 ft) samples on RC holes and multielement analysis of the composites was completed via four acid digestion for all elements except mercury which was analyzed by cold vapor (ALS codes ME-MS61 and Hg-MS42). Multielement analysis was completed on the core samples using ME-MS61.

Overlimit samples for fire assay AAS values exceeding 4.0 ppm (0.117 opt) Au were analysed using fire assay with a gravimetric finish (ALS code AU-GRA21). Fire assay AAS values exceeding 0.14 ppm (0.004 opt) in 2017 and 0.10 ppm (0.003 opt) Au in 2018 and 2019, were analysed using cyanide solubility assays (ALS code Au-AA13) to identify oxide versus sulphide mineralization.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

11.3.3 Quality Assurance – Quality Control

The analytical portion of the QA-QC program employed by Contact Gold aims to provide a means by which the accuracy and precision of the assaying that is performed

on its drilling samples (core and RC chip) can be measured to ensure the highest possible data quality. Contact Gold's sampling QA-QC procedures for the 2017 to 2019 Pony Creek drill program consisted of the insertion of a certified standard reference material (standards), rig duplicate or blank into the sample sequence every 10 to 25 samples using sequential numbers, with no footage or meters noted on samples.

Standards were inserted into the analytical sample stream in order to provide a means by which overall analytical precision and accuracy can be measured. Standard samples were commercially purchased and comprise pulverized and homogenized materials that have been suitably tested, normally by means of a multi-lab round robin analysis to establish an accepted (certified) value for the standard and statistics to define and support the "acceptable range" (i.e., variance), by which subsequent analyses of the material may be judged. Generally, this involves the examination of assay results relative to inter-lab Standard Deviation (SD), resulting from each standard's round-robin testing data, whereby individual assay results may be examined relative to 2SD and 3SD ranges.

The standards used in Contact Gold's drilling programs include Rocklabs products OXB130, OXE126, OXE143 and OXJ120. This selection provided a range of expected oxide gold grades associated to the historical drill values. The standards were purchased by Contact Gold from A & A Equipment in Elko, NV. Sample weights for the standards averaged 0.06 kg.

Coarse blank samples provide a means by which the sample preparation procedures at laboratories can be tested for potential issues related to sample-to-sample contamination, usually due to poor procedures related to incomplete clearing/cleaning of crushing and pulverizing machines between samples. The blank material used in Contact Gold's drilling programs was prepared with a carbonate matrix from Shea Clark Smith/MEG Inc. Sample weights for blanks averaged 0.59 kg.

The rig duplicate samples comprised the collection of a second sample of RC chips representing the same interval, with both the "parent" and the "duplicate" samples submitted for separate assays. The drill rig duplicates are used to assess the quality of homogenization achieved by the cyclone splitter. Significant differences between original and duplicate sample assay results could indicate sample bias during the splitting process or could be due to inhomogeneity inherent to the rock samples. Most duplicate samples for the RC drilling were collected concurrently as the interval being duplicated using the second slot in the cyclone. At the beginning of 2018 there were several RC sample duplicate failures. After re-running failed duplicate sample rejects and pulps it became obvious that the problem was occurring in the initial sample collection and not at the laboratory. A procedure for collecting a duplicate RC sample using a riffle splitter was initiated and there were no other failed duplicates with the use of a riffle splitter following drillhole PC18-08.

QA-QC failures were addressed by re-assaying batches in which they occur prior to finalizing gold intercept calculations. QA-QC summary reports (Hibdon, 2018; 2019b; c) for each drill program were prepared on a yearly basis by Contact Gold geologist Zachery

Hibdon. The summary reports document all failures and follow up measures taken by the Company to address any identified issues, and include charts of duplicates, standards and blanks. The authors of this Technical Report have reviewed these summary reports and they have been used to supplement the information in the following sub-sections.

11.3.3.1 2017 Drill Program

In 2017, a total of 6,615 samples were sent to ALS for gold analysis, along with 284 randomly inserted (but at specified intervals) QA-QC samples. The QA-QC samples included 90 duplicate samples, 101 blank samples and 93 standards.

Duplicates were inserted into the sample stream randomly for the 2017 RC drill program. A total of 90 duplicates were analyzed via fire assay with an AAS finish (ALS code Au-AA23). The results of the fire assay analyses are illustrated in Figure 11.1 below.

There were issues with 3 samples (2 RC and 1 core) that warranted follow up actions. In the case of the two RC samples, the duplicate sample had a higher gold value. Samples 1707031/1707032 and samples 1710031/1710032 were the A/B samples to be duplicated. Once their final values were posted, Contact Gold requested a re-run of those and the surrounding samples for verification of the reported assay values (Table 11.1). The original assays were shown to be correct, indicating an issue with the Y splitter attached to the RC drill rig.

Figure 11.1. 2017 Duplicate fire assay results for Au.

Table 11.1. Summary of 2017 RC duplicate ALS re-runs (modified from Hibdon, 2018).

		EL17182169	EL171	82169	EL171	82169	
		WEI-21	El-21 Au-AA1		Au-A	AA23	
		Recvd Wt.	Au		Au		
		kg	pp	m	ppm		
Sample T	ype	Original	Original	Re-run	Original	Re-run	
1710029 Perc	ussion	3.57	0.03	*	0.176	*	
1710030 Perc	ussion	3.41	*	*	0.064	0.074	
1710031 Perc	ussion	1.67	*	*	0.104	0.114	
1710032 Perc	ussion	2.03	0.04	0.06	0.2	0.213	
1710033 Perc	ussion	3.36 0.06 0.08		0.65	0.672		
		EL17179891	EL17179891		EL17179891		
		WEI-21	Au-A	A13	Au-A	AA23	
		Recvd Wt.	Α	u	Au		
		kg	pp	m	pp	om	
Sample T	ype	Original	Original	Re-run	Original	Re-run	
1707029 Perc	ussion	2.56	*	*	0.073	*	
1707030 Perc	ussion	2.96	*	*	0.112	0.11	
1707031 Perc	ussion	2.12	0.11	0.09	1.57	1.55	
1707032 Perc	ussion	1.8	0.21	0.25	2.62	2.55	
1707033 Percussion		2.64	0.15	0.13	1.345	1.38	

A total of 93 coarse blanks were inserted in the sample stream in 2017. The blanks largely (95%) returned assay results within an allowable threshold (within 3x the lower detection limit), with the majority (91%) returning values below the Au-AA23 detection limit of 0.005 ppm Au (Figure 11.2). In the opinion of the authors, the results are considered acceptable and there are no significant issues to report regarding the 2017 Pony Creek blank analyses.

Standards were inserted into the sample stream randomly but at specified intervals for the 2017 Pony Creek RC drillholes. A total of 93 standards were recorded as inserted but 1 sample was not received at ALS. The standards were analyzed using fire assay with AAS finish (ALS lab code Au-AA23). Standards used include three different certified reference materials from ROCKLABS: OxB130 (Au = 0.125 ppm, n = 49), OxE126 (Au = 0.623 ppm, n = 21), and OxJ120 (Au = 2.365 ppm, n = 21), as well as 2 samples indicated as Standards, but the reference identifier was not recorded.

The results of the fire assay analyses for all standards are illustrated in Figures 11.3 to 11.5. One of the OXB130 standards failed falling greater than 3 standard deviations below its known value. There were no related issues for the OxE126 or the OxJ120 standards.

Figure 11.2. 2017 Coarse blank fire assay results for Au.

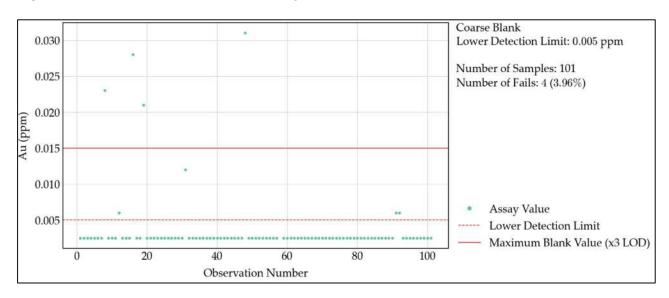


Figure 11.3. 2017 Standard reference material (OxB130 Rock Labs) fire assay results.

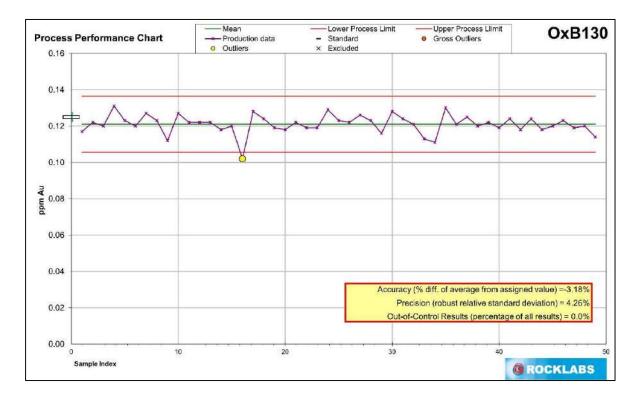


Figure 11.4. 2017 Standard reference material (OxE126 Rock Labs) fire assay results.

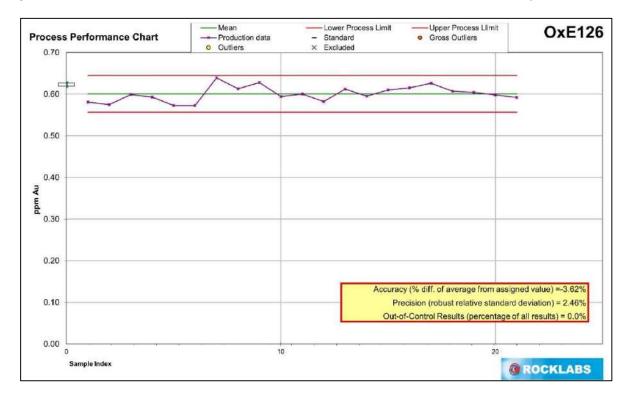
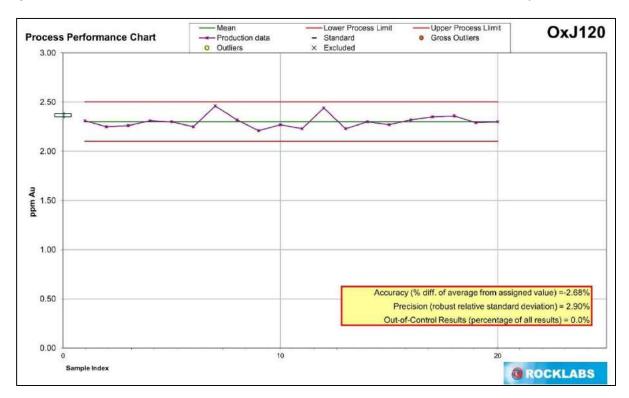



Figure 11.5. 2017 Standard reference material (OxJ120 Rock Labs) fire assay results.

Contact Gold submitted 103 ALS pulps to Bureau Veritas Laboratory in Reno, Nevada, to verify the performance of ALS and the reproducibility of the gold assays. A variety of samples from 2017 were submitted to Bureau Veritas, including various grades of mineralization, both oxide and refractory, and duplicates, standards and blanks from the 2017 QA-QC program. Gold analysis was completed via fire assay with an AAS finish (Bureau Veritas code FA430) and cyanide leach with an AA spectroscopy finish (Bureau Veritas code CN403). Overlimit samples for gold were analysed by fire assay with a gravimetric finish (Bureau Veritas code FA530-Au).

Bureau Veritas is an internationally accredited analytical company with ISO9001:2008 certification and is independent of Contact Gold and the authors of this Technical Report.

The variance between the two laboratories was similar: 63% (n=50) of the ALS Au-AA23 analyses were higher in gold concentration in comparison to the Bureau Veritas FA430 analyses, 33% (n=26) of the Bureau Veritas FA430 analyses were higher in gold concentration, and 4 samples returned the same value at both labs. Regarding the cyanide leach analyses, 66% (n=53) of the samples returned higher grades at ALS (Au-AA13) and 34% (n=27) of the samples returned higher grades at Bureau Veritas (CN403), and 12 samples returned the same value at both labs.

11.3.3.2 2018 Drill Program

In 2018, a total of 7,092 samples were sent to ALS for gold analysis, along with 767 randomly inserted (but at specified intervals) QA-QC samples. A single sample was recorded as not received by ALS, the base of 18-16, sample ID 1816199. The QA-QC samples included 235 duplicate samples, 273 blank samples and 259 standards.

Duplicates were inserted into the sample stream randomly for the 2018 RC drill program. A total of 235 duplicates were analyzed via fire assay with AAS finish (Au-AA23). The results of the fire assay analyses are illustrated in Figure 11.6 below. The data show excellent correlation (ρ = 0.987) and a failure rate of 6.38%. ALS re-run analyses were conducted on 7 samples and the re-run analyses were consistent with the original assay results (Hibdon, 2019b). Contact Gold determined that there was an issue with the Y splitter on the drill rig cyclone and introduced a riffle splitter into the sampling procedure following drillhole PC18-08 to reduce duplicate failures.

A total of 273 coarse blanks were inserted in the sample stream in 2018. The blanks largely (98%) returned assay results within an allowable threshold (within 3x the lower detection limit), with the majority returned values below the Au-AA23 detection limit of 0.005 ppm Au (Figure 11.7). The results are considered acceptable. Sample 1824010 had the highest returned value for a blank in 2018 at 70 ppb Au. The sample's remaining reject was re-assayed with ALS. The second assay was also high, and it was concluded that the blank failure was due to contamination from the interval prior to the sample.

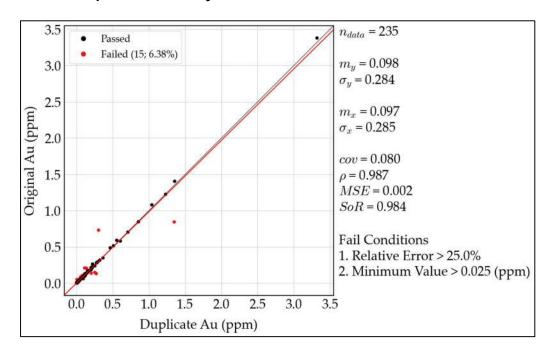
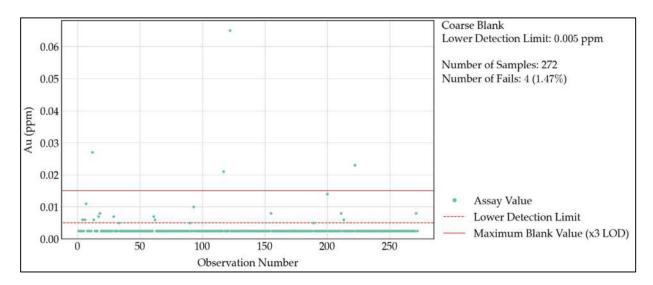
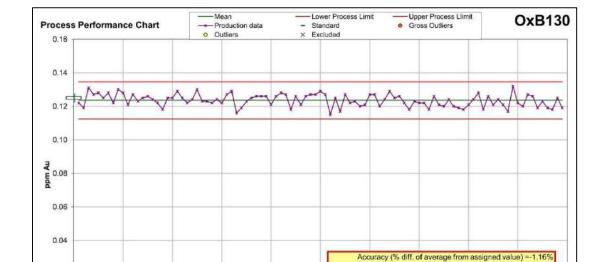



Figure 11.6. 2018 Duplicate fire assay results for Au.

Figure 11.7. 2018 Coarse blank fire assay results for Au.



In the opinion of the authors of this Technical Report, the results are considered acceptable and there are no significant issues to report regarding the 2018 Pony Creek blank analyses.

Standards were inserted into the sample stream randomly but at specified intervals for the 2018 RC drillholes. A total of 259 standards were recorded as inserted and received by ALS, where they were analyzed using fire assay (Au-AA23). Standards used include four different certified reference materials from ROCKLABS: OxB130(Au = 0.125)

ppm, n = 99), OxE126 (Au = 0.623 ppm, n = 63), OxE143 (Au = 0.621 ppm, n = 21), and OxJ120 (Au = 2.365 ppm, n = 76).

The results of the fire assay analyses for all standards are illustrated in Figures 11.8 to 11.11. The majority of the standards returned assay results within acceptable limits. There were no issues for the OxB130 standard. OxE126 and OxE143 standards were consistently lower than the certified values for fire assays. In the opinion of the author, the results are considered acceptable and there are no significant issues to report regarding the 2018 Pony Creek standard reference material analyses.

0.02

0.00

Precision (robust relative standard deviation) = 2.999

Out-of-Control Results (percentage of all results) = 0.09

ROCKLABS

Figure 11.8. 2018 Standard reference material (OxB130 Rock Labs) fire assay results.

Figure 11.9. 2018 Standard reference material (OxE126 Rock Labs) fire assay results.

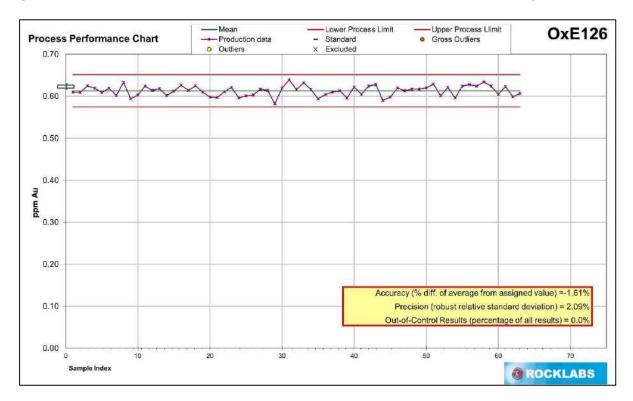


Figure 11.10. 2018 Standard reference material (OxE143 Rock Labs) fire assay results.

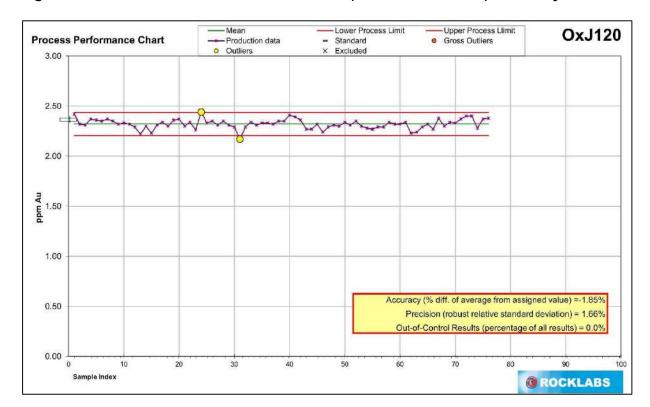


Figure 11.11. 2018 Standard reference material (OxJ120 Rock Labs) fire assay results.

Contact Gold submitted 31 ALS pulps from the 2018 Pony Creek drill program to Bureau Veritas Laboratory in Reno, Nevada, to verify the performance of ALS and the reproducibility of the gold assays. The pulps contained samples of low to high grade oxide and oxide transitional gold mineralization. Gold analysis was completed via fire assay with an AAS finish (Bureau Veritas code FA430) and cyanide leach with an AA spectroscopy finish (Bureau Veritas code CN403). Overlimit samples for gold were analysed by fire assay with a gravimetric finish (Bureau Veritas code FA530-Au).

Bureau Veritas is an internationally accredited analytical company with ISO9001:2008 certification and is independent of Contact Gold and the authors of this Technical Report.

The variance between the two laboratories was similar. On average, the gold values from ALS were slightly higher: 65% (n=20) of the ALS Au-AA23 analyses returned higher gold grades in comparison to the Bureau Veritas FA430 analyses, 32% (n=10) of the Bureau Veritas FA430 analyses returned higher gold grades in comparison to ALS Au-AA23 analyses, and 1 sample returned the same value at both labs. Regarding the cyanide leach analyses, 90% (n=17) of the 19 oxide samples returned higher grades at ALS (Au-AA13) in comparison to Bureau Veritas (CN403), by an average of 0.095 ppm.

11.3.3.3 2019 Drill Program

In 2019 a total of 2,928 samples were sent to ALS for gold analysis, along with 249 QA-QC samples. The QA-QC samples included 79 duplicate samples, 86 blank samples, and 84 standards.

Duplicates were inserted into the sample stream randomly for the 2019 RC drill program, at specific intervals. A total of 79 duplicates were analyzed via fire assay (Au-AA23). The results of the fire assay analyses are illustrated in Figure 11.12. The data show excellent correlation (ρ = 0.999) with a 2.53% (n=2) failure rate.

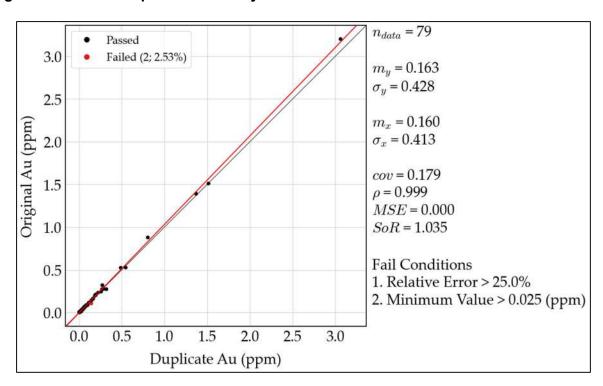


Figure 11.12. 2019 Duplicate fire assay results for Au.

A total of 86 coarse blanks were inserted in the sample stream in 2019. The blanks largely (97%) returned assay results within an allowable threshold (within 3x the lower detection limit), with the majority returned values below the Au-AA23 detection limit of 0.005 ppm Au (Figure 12.13).

Standards were inserted into the sample stream randomly but at specified intervals for the 2019 RC drillholes. A total of 84 standards were recorded as inserted and received by ALS, where they were analyzed using fire assay (Au-AA23). Standards used include three different certified reference materials from ROCKLABS: OxB130 (Au = 0.125 ppm, n = 40), OxE143 (Au = 0.621 ppm, n = 28), and OxJ120 (Au = 2.365 ppm, n = 16).

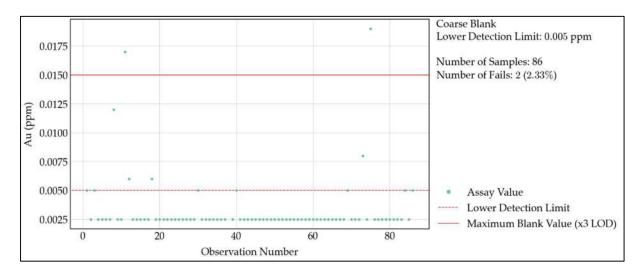


Figure 11.13. 2019 Coarse blank fire assay results for Au.

The results of the fire assay analyses for all standards are illustrated in Figures 11.14 to 11.17. Sample 1912060 (STD OXE143) returned a low value for Au-AA23 but was passed based on the value returned by Au-AA13, which was within the process limits. Sample 1918120 failed, returning an Au value at the lower detection limit, this was likely a blank mis-labelled in the field.

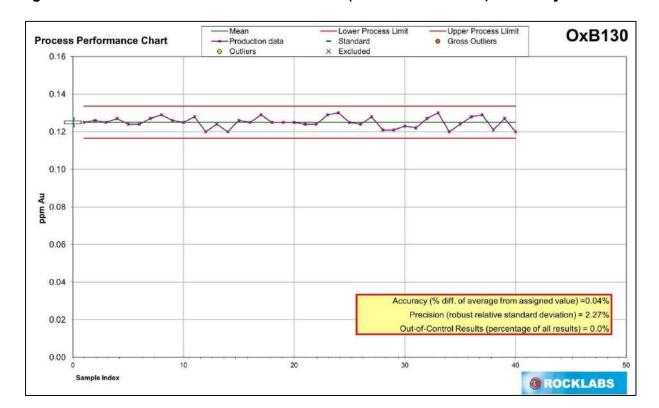


Figure 11.14. 2019 Standard reference material (OxB130 Rock Labs) fire assay results.

Figure 11.15. 2019 Standard reference material (OxE143 Rock Labs) fire assay results.

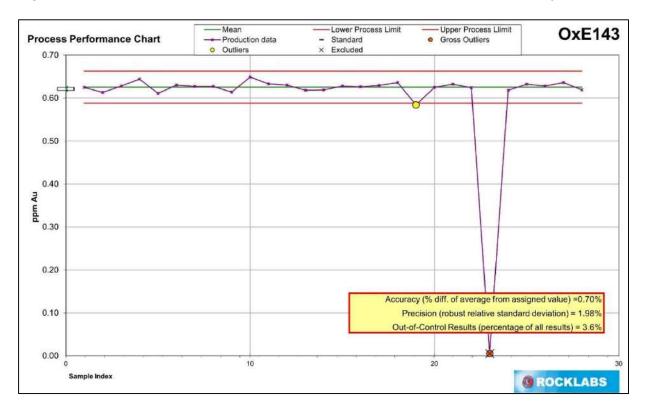


Figure 11.16. 2019 Standard reference material (OxJ120 Rock Labs) fire assay results.

In the opinion of the authors of this Technical Report, the results are considered acceptable and there are no other issues to report regarding the 2019 Pony Creek standard reference material analyses.

Contact Gold submitted 18 ALS pulps from the 2019 Pony Creek drill program to Bureau Veritas Laboratory in Reno, Nevada, to verify the performance of ALS and the reproducibility of the gold assays. The pulps contained samples of oxide and oxide transitional gold mineralization. Gold analysis was completed via fire assay with an AAS finish (Bureau Veritas code FA430) and cyanide leach with an AA spectroscopy finish (Bureau Veritas code CN403). No overlimit samples for gold were compared.

Bureau Veritas is an internationally accredited analytical company with ISO9001:2008 certification and is independent of Contact Gold and the authors of this Technical Report.

The variance between the two laboratories was similar: 50% (n=9) of the ALS Au-AA23 analyses were higher in gold concentration in comparison to the Bureau Veritas FA430 analyses, 44% (n=8) of the Bureau Veritas FA430 analyses were higher in gold concentration, and 1 sample returned the same value at both labs. Regarding the cyanide leach analyses, 56% (n=10) of the samples returned higher grades at Bureau Veritas (CN403) in comparison to ALS (Au-AA13), by an average of 0.05 ppm.

11.4 Adequacy of Sample Collection, Preparation, Security and Analytical Procedures

In the opinion of the authors of this Technical Report, there were no issues with respect to the sample collection methodology, sample security, sample preparation or sample analyses in any of the exploration programs completed at the Pony Creek Property by Contact Gold from 2017-2019. In addition, there were no indications that there were any significant issues with respect to sample bias.

The authors note that limited information is available regarding the pre-2000's drill programs and there is no information concerning the handling, storage or transport of drilling samples from the drill sites to the analytical laboratories by the historical operators of the Property.

The 2017 to 2019 sample collection, sample preparation, security and analytical procedures used at the Pony Creek Project are appropriate for the type of mineralization that is being evaluated and the stage of the project. The QA-QC measures including the insertion rates and performance of blanks, standards, and duplicates for the 2017-2019 drill programs indicate the observed failure rates are within expected ranges and no significant assay biases were apparent. Based upon the evaluation of the drilling, sampling and QA-QC programs completed by Contact Gold, it is Mr. Dufresne's opinion that the Pony Creek drill and assay data are appropriate for use in the resource modeling and estimation work discussed in Section 14 of this Technical Report.

The authors note that no standard reference samples were inserted into Contact Gold's soil sampling stream; however, a surface soil geochemical program is generally

used to delineate relative anomalies, and/or percentiles, and absolute elemental concentrations for soil and rock samples are not as significant in comparison with other types of samples (i.e., drilling samples for resource estimation). In addition, no standard reference materials were inserted into the rock sample stream. Due to the inherent nature of rock sampling, rock grab samples are biased to some degree with respect to selective sampling of obviously mineralized material to the exclusion of weakly or unmineralized material that may occur in the same area. Therefore, in the authors' opinion, it is suitable that no QA-QC samples were inserted into the rock grab samples as there was no need to test analytical precision and accuracy because the data is not intended for use in any potential future quantitative analyses (i.e., resource estimation) and is simply used as an indicator of the nature and tenor of potential mineralization in a given area.

In conclusion, the data within the Project's exploration databases is considered suitable for use in the further evaluation of the Property and for it intended us here in including mineral resource estimation.

12 Data Verification

12.1 Qualified Person Site Inspection

The senior author of this Technical Report, Mr. Michael Dufresne, M.Sc., P.Geol., P.Geo., a QP and principal of APEX Geoscience Ltd. conducted a site inspection of the Pony Creek Property on January 26-27, 2022. The objectives of the site visit included:

- Verification of the geology of the Property.
- Verification of selected drillhole collar locations.
- Observation and sampling of potential mineralization in outcrop.
- Examination of drill core and observation of mineralized intercepts.
- Collection of verification samples, including pulps from drillhole PC-18-03.

Mr. Dufresne travelled to Contact Gold's office in Elko, NV, on January 26, 2022. On the afternoon of January 26, 2022, the author reviewed historical and Contact Gold drill core, RC chip trays and RC drill logs from recent drill programs completed by Contact Gold and collected pulp samples from drillhole PC-18-05 for verification analysis. The lithology, mineralization and structural orientations observed in the drill core were consistent with the original drill logs. Figure 12.1 shows drill core from hole PC06-06, drilled by Grandview in 2006 at the Bowl Zone.

Figure 12.1. Core from drillhole PC06-06 drilled in 2006 at the Bowl Zone showing the porphyritic rhyolite geological unit and a brecciated interval of intense faulting.

Mr. Dufresne flew by helicopter January 27, 2022 to the Property. Mr. Dufresne's Property tour focused on the northern part of the Property near the Stallion Zone and Pony Spur target area. During his visit to the Property, a total of 4 drill collar coordinates were recorded using a handheld GPS in the field (Figure 12.2) These coordinates were compared against original collar coordinates in Contact Gold's database to validate the drilling data from the Property. In general, and appreciating the limited precision of a handheld GPS, the comparison of selected field-verified drill collars with database values did not yield any significant discrepancies. The drill collar locations visited by Mr. Dufresne are illustrated in Figure 12.3. Table 12.1 summarizes the verification survey results.

Table 12.1. Drill collar coordinate comparison table. All coordinates are in UTM Nad83 Zone 11.

Drillhole	Easting (m)	Northing (m)	Elevation	0	U		Difference Easting (m)	Difference Northing (m)	Difference Elev. (m)
PC19-20	585855	4470214	2179	585861	4470213	2179	6	-1	0
PC19-21	585808	4470354	2198	585807	4470351	2199	-1	-3	1
PC18-48	585877	4470309	2210	585876	4470311	2209	-1	2	-1
PC18-25	584858	4468976	2035	584858	4468973	2036	0	-3	1

Figure 12.2. Mr. Dufresne's verification of Contact Gold drill collar PC19-21.

In addition, Mr. Dufresne collected 3 composite rock grab samples from the Stallion Zone and 15 pulp samples from mineralized intervals in drillhole PC18-03. The three grab samples were collected in proximity to recent Contact Gold drill collar locations: PC18-48, PC19-20 and PC19-21 (Figure 12.3).

The rock grab and pulp samples were delivered by APEX personnel to ALS in North Vancouver and Langley, BC, respectively. ALS is an International Standard ISO/IEC 17025:2005 certified laboratory and is independent of the Company and the authors of this Technical Report. At ALS in North Vancouver, the rock grab samples were crushed and pulverized, and 30 g aliquots were analysed for gold using fire assay with AES finish (ALS code Au-ICP21). Multielement geochemical analysis was completed using four acid digestion with an ICP-MS finish (ALS code ME-MS61). The pulp samples were received at ALS in Langley and sent to ALS in North Vancouver for analysis. The pulps were analyzed for gold using fire assay with AAS finish (ALS code Au-AA25). Multielement geochemical analysis was completed using four acid digestion with an ICP-MS finish (ALS code ME-MS61). The results of the verification rock grab and pulp sampling are presented in Table 12.2 and 12.3, respectively.

Figure 12.3. QP site visit drill collar coordinate verification and grab sample locations.

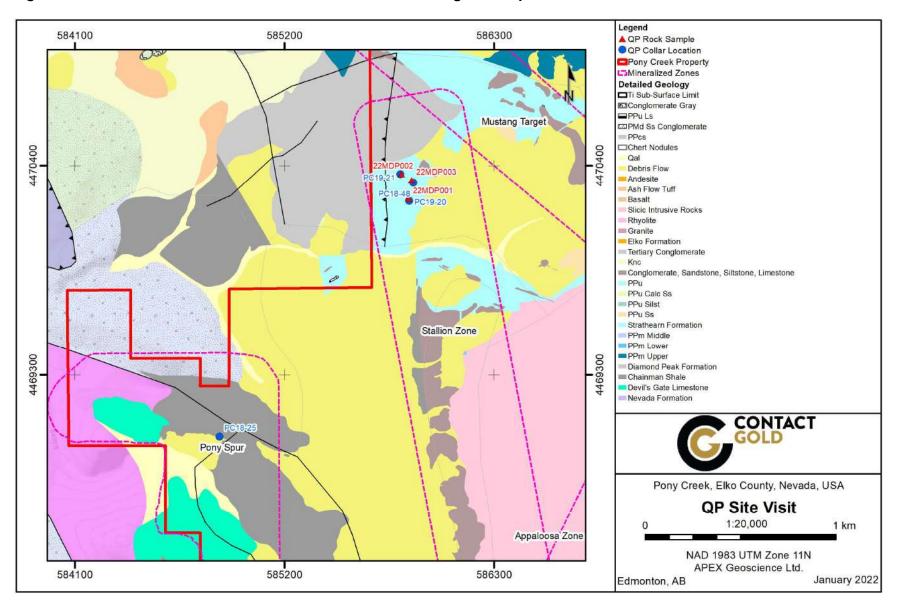


Table 12.2. Pony Creek QP site visit verification rock grab sample locations and results. All coordinates are in UTM Nad83 Zone 11.

Sample ID	Easting (m)	Northing (m)	Elevation (masl)	Au ppm	Ag ppm	As ppm	Ba ppm	Mo ppm	Sb ppm	Zn ppm
22MDP001	585851	4470225	2179	0.006	1.12	27.9	160	3.04	4.91	31
22MDP002	585814	4470355	2200	0.167	4.95	152	90	13.1	38.5	153
22MDP003	585868	4470323	2212	0.269	4.53	172	110	7.58	69.2	276

Table 12.3. QP site visit verification pulp sample results.

Samula ID	Hele ID	Sample-	From (ft)	To (#)	Interval	From	To (m)	Au ppm (AA23 2018)	Au opt (AA23 2018)	Au ppm (Grav 2018)	Au ppm (AA25 2022)	Au opt (AA25 2022)
Sample ID	Hole ID	Туре	From (ft)		(ft)	(m)	To (m)	,	,	(Grav 2010)	,	,
		Pulp	285			86.87	88.39	1.19			1.23	
1803065	PC18-03	Pulp	290	295	5	88.39	89.92	1.495	0.044		1.53	0.045
1803066	PC18-03	Pulp	295	300	5	89.92	91.44	1.71	0.050		1.75	0.051
1803067	PC18-03	Pulp	300	305	5	91.44	92.96	1.66	0.048		1.71	0.050
1803068	PC18-03	Pulp	305	310	5	92.96	94.49	4.58	0.134	4.80	4.75	0.139
1803069	PC18-03	Pulp	310	315	5	94.49	96.01	4.76	0.139	4.82	4.68	0.136
1803070	-	Blank	-	-	-	-	-	-	-	-	0.02	0.001
1803071	PC18-03	Pulp	315	320	5	96.01	97.54	3.69	0.108		3.73	0.109
1803072	PC18-03	Pulp	320	325	5	97.54	99.06	1.56	0.045		1.48	0.043
1803073	PC18-03	Pulp	325	330	5	99.06	100.58	1.25	0.036		1.25	0.036
1803074	PC18-03	Pulp	330	335	5	100.58	102.11	0.744	0.022		0.74	0.022
1803075	PC18-03	Pulp	335	340	5	102.11	103.63	1.435	0.042		1.42	0.041
1803076	PC18-03	Pulp	340	345	5	103.63	105.16	0.815	0.024		0.85	0.025
1803077	PC18-03	Pulp	345	350	5	105.16	106.68	1.51	0.044		1.58	0.046
1803078	PC18-03	Pulp	350	355	5	106.68	108.20	1.765	0.051		1.77	0.052
1803079	PC18-03	Pulp	355	360	5	108.20	109.73	1.89	0.055	_	1.88	0.055

The composite rock grab samples collected from the Stallion Zone contained low grade gold mineralization with 0.269 ppm Au in 22MDP003 and 0.167 ppm Au in 22MDP002, as well as elevated levels of pathfinder elements including Ag, As, Ba, Mo, Sb and Zn (Table 12.2). The site visit rock grab sample mineralization is consistent with the style and tenor of mineralization previously described on the Property.

The pulp samples from the mineralized intervals in drillhole PC-18-03 correlate reasonably well with the original 2018 assays (Table 12.3). On average, the gold values from the QP verification pulps (AA25 2022) were higher in comparison to the original analyses (AA23 2018), 60% (n=9) of the samples returned higher gold grades compared to the original, and 1 sample returned the same value. The original overlimit samples analysed via fire assay with a gravimetric finish (Grav 2018) returned higher gold values in comparison to the QP verification pulps (AA25 2022) with a variance of 0.05 and 0.14 ppm Au. Regarding multielement geochemical analysis, all of the pulps contained pathfinder elements including Ag, As, Ba, Mo, Sb, Tl and Zn.

Based on independent verification sampling of rock grab and pulp samples, as well as a review of the outcrop exposure, drill core and drill chips, Mr. Dufresne can verify the geological observations, results and conclusions of the most recent exploration work carried out by Contact Gold at Pony Creek.

12.2 Data Verification Procedures

Pony Creek has been the site of numerous exploration programs since the 1980's. As such, a large volume of the geological data on the Property has been developed and some of the data and information related to the geology and mineralization at the Property is historical in nature and was collected prior to the adoption of NI 43-101.

The authors conducted data verification of the following historical information and data:

- Historical and Contact Gold surface sampling locations and assay analytical results.
- Historical and Contact Gold drillhole data, including drill logs, assay analytical results and laboratory certificates.
- Contact Gold metallurgical test work data and laboratory certificates.

Data verification procedures included compiling all digital drilling data into excel spreadsheets and importing the data into Micromine to create a drillhole database (DHDB). This was a combination of historical data compilations conducted by Mine Development Associates (MDA; Gustin, 2017), as well as original logs and assay certificates from Contact Gold drilling in 2017, 2018 and 2019. The compilation included collar coordinates, downhole survey information, geological interval data and assay

information. Once verified, data were compiled into the Micromine drillhole database. A total of 373 drillholes, with collar and assay data, were compiled into the database.

Once compiled, a brief and concise check program was completed comparing the original drill logs, assay certificates and collar coordinates to the compiled database. The Micromine database comes with verification tools, and these were also employed to assist in the data verification. Original assay certificates and geological logs were utilized to check the Micromine database for various generations of drilling. Checks were conducted to ensure that the original data (including the pre-2017 drilling data) were adequately digitized and properly imported into the Micromine database. Approximately 10% of the historical (pre-2018) drillhole data, including collars, downhole surveys (if present), geology and assays were checked against hardcopy paper logs and certificates to verify the historical data in Micromine database. Minor typos, precision errors, conversion errors and columns mismatches were found and rectified. Overall, the database is considered to be accurate and acceptable for resource estimation and mining given the current data at hand.

All the Contact Gold drilling data for 2017-2019 was compiled from original data provided by the Company into the Micromine database and was reviewed by the authors. The 2017 – 2019 drilling data contained adequate QA-QC data, as summarized above in Section 11. The geological logs were compared to the original paper copies for digitizing errors, and no errors were found.

12.3 Validation Limitations

The authors note that the known QA-QC data from historical drill programs at Pony Creek is limited to only duplicate data from the Homestake and Grandview drilling programs in 2000 and 2005-2007, respectively.

12.4 Adequacy of the Data

In summary, the authors and QPs have reviewed the adequacy of the exploration information and the visual, physical and geological characteristics of the Property and have found no significant issues or inconsistencies that would cause one to question the validity of the data. The authors consider the Contact Gold Pony Creek drillhole database, including the historical pre-2017 data and the 2017 to 2019 data, well validated and suitable for the preparation of the MRE presented in Section 14 of this Technical Report.

13 Mineral Processing and Metallurgical Testing

No metallurgical testing was completed by previous operators of the Pony Creek Property. The following discussion summarizes metallurgical test work completed on behalf of Contact Gold at the Pony Creek Property from 2018 to 2020.

13.1 2018 Contact Gold Metallurgical Testing

Cyanide solubility analysis was completed on select samples from Contact Gold's 2017 and 2018 drill programs to develop a three-dimensional oxide model to assist in constraining future mineral resource estimates, and to assist in the selection of locations for drilling metallurgical core for column leach testing (Contact Gold Corp., 2018a). All fire assay atomic absorption (AA) spectroscopy solubility values exceeding 0.14 ppm in 2017 and 0.10 ppm Au in 2018, respectively, were analysed using cyanide solubility analysis (ALS code Au-AA13) at ALS in Reno, Nevada, or ALS in North Vancouver, BC.

In 2018, the remaining pulp material of 111 individual samples was used to generate 1 kg composite samples. The individual samples were from oxidized, mixed and sulphide intercepts. The cyanidation bottle roll tests for gold were conducted on the composite samples by ALS in Reno, Nevada, via a 12-hour cyanide leach with an atomic absorption spectroscopy finish (ALS code Au-AA14).

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

Gold recoveries on two oxide composites by Contact Gold were 85% for the rhyolite gold mineralization and 90% for the conglomerate composite of the weighted average of fire assays for the same composites, indicating that the oxidized portion of gold mineralization at Pony Creek's Bowl Zone is amenable to standard cyanidation processing (Spalding, 2018). The results of the standard cyanidation bottle roll tests are presented in Table 13.1.

Table 13.1. Summary of ALS bottle roll test results for Bowl Zone composites (from Spalding, 2018).

Composite Samples	Weighted Average Grade of Fire Assays	Bottle Roll Cyanide Assay	% Gold Recovery Bottle Roll versus Fire Assay
Bowl Zone Conglomerate Oxide Composite #1	0.55 g/t Au	0.45 g/t Au	90%
Bowl Zone Rhyolite Oxide Composite #2	0.27 g/t Au	0.23 g/t Au	85%
Bowl Zone Transitional Oxide and Sulphide	0.41 g/t Au	0.18 g/t Au	44%
Bowl Zone Weakly Oxidized Rhyolite	0.93 g/t Au	0.21 g/t Au	23%
Bowl Zone Unoxidized Sandstone / Siltstone	2.59 g/t Au	0.23 g/t Au	9%

In addition, preg robbing analysis was completed on one sulphide interval from Contact Gold drillhole PC18-04. The analysis was conducted: "based upon the fact that most cyanide assays conducted by Contact Gold demonstrate recovery of at least some gold in cyanide assays from some sulphide material, whereas most double refractory Carlin-Type gold ores (carbonaceous and sulphide encapsulated) do not yield any

detectable gold from cyanide assays, and upon the fact that very little carbon that might be preg robbing has been observed in logging chips and core by Contact Gold geologists (Spalding, 2018)."

Thirty-four pulp samples were submitted to ALS in Elko, NV, and shipped to ALS in Reno, NV, for analysis. The preg rob leach analysis was completed with and without the addition of a gold spike followed by an atomic absorption spectroscopy finish (ALS codes Au-AA31 and Au-AA31a).

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

Although additional testing is required, the initial results indicate that the sulphide material may not need to be segregated from the oxide material as waste and some gold may be recovered during the heap leach. The preg robbing values varied for 34 individual 1.524 m intervals from -3% to 69%. A breakdown of the results has been summarized from Spalding (2018) as follows:

- 59% (20 of 34) of the samples <10% preg robbing,
- 30% (10 of 34) of the samples between 10 and 40% preg robbing, and
- 11% (4 of 34) of the samples > 40% preg robbing.

Greater than 40% preg robbing is the threshold where heap leach operations become concerned. Additional testing will be needed to determine if the higher values are preg "borrowing", in which case a heavier dose of CN might recover the gold and keep it separate from the rest of the pad or put it on the top lift of the pad (Spalding, 2018).

13.2 2020 Contact Gold Metallurgical Testing

In 2020, cyanidation bottle roll tests for gold were completed on four composite samples from the Bowl and Stallion zones. The cyanide bottle roll test recoveries range from 92 to 106% in the oxide zone at Bowl and Stallion and 15% in the non-oxide zone at the Bowl Zone. The results of the cyanide bottle roll tests are presented in Table 11.2.

The composite samples are summarized from Contact Gold Corp. (2020b) as follows:

- Bowl Zone: From an oxide interval, a composite sample from drillhole PC18-03 was composed of 27 individual 1.524 m (5 ft) sample intervals totalling 1.08 kg. From a refractory interval, a composite sample from drillhole PC18-03 was composed of 24 individual 1.524 m (5 ft) sample intervals totalling 1.17 kg.
- Stallion Zone: A composite sample from drillhole PC19-24 was composed of 16 individual 1.524 m (5 ft) sample intervals totalling 1.09 kg. A composite

sample from drillhole PC19-21 was composed of 19 individual 1.524 m (5 ft) sample intervals totalling 1.05 kg.

Zone	Hole ID	To (m)	From (m)	Interval (m)	Bottle Roll Assay	Bottle Roll Recovery vs Fire Assay AA +/- Gravimetric Finish
Stallion	PC19-24	10.67	44.20	33.53	0.48	92%
Stallion	PC19-21	3.05	32.00	28.95	0.36	106%
Bowl	PC18-03	86.87	134.11	47.24	2.24	100%
Bowl (non-oxide)	PC18-03	38.10	74.68	36.58	0.09	15%

The original average grade analysis for gold was determined by fire-assay fusion with an atomic absorption (AA) spectroscopy finish at a 5-ppb detection limit using 30 g aliquots (ALS code Au-AA23. Overlimit samples for fire assay AA values exceeding 4.0 ppm (0.117 opt) Au were analysed using fire assay with a gravimetric finish (ALS code AU-GRA21). Fire assay AA values exceeding 0.10 ppm (0.003 opt) Au in 2019 were analysed using cyanide solubility assays (ALS code Au-AA13). The cyanidation bottle roll tests for gold were conducted on the composite samples by ALS in Reno, Nevada, via a 12-hour cyanide leach with an atomic absorption spectroscopy finish (ALS code Au-AA14). The samples were submitted to ALS in Elko, NV, for preparation and then shipped to Reno, NV, or ALS in North Vancouver, BC, for analysis.

ALS is an ISO 9001:2015 certified and ISO/IEC 17025:2005 accredited geoanalytical laboratory and is independent of Contact Gold and the authors of this Technical Report.

14 Mineral Resource Estimates

The mineral resource estimate (MRE) herein is based upon the historical drilling and drilling conducted by Contact Gold between 2017 and 2019 and supersedes all the prior resource estimates for the Pony Creek Property. Previous historical resource estimates are discussed in the Section 6 of this report and are all considered historical in nature.

This section details an updated NI 43-101 MRE completed for the Pony Creek Property by APEX Geoscience Ltd. (APEX) of Edmonton, Alberta, Canada. Mr. Tyler Acorn, M.Sc. completed the mineral resource estimate, with assistance from Mr. Warren Black, M.Sc., P.Geo., under the direct supervision of Mr. Michael Dufresne, M.Sc., P.Geol., P.Geo. Mr. Dufresne is an independent QP with APEX and takes responsibility for the MRE and Section 14 herein. Mr. Dufresne visited the Property on January 26-27, 2022, and reviewed core from the 2017 to 2019 drill program completed by Contact Gold Corp., as discussed above in Section 12.1.

Definitions used in this section are consistent with those adopted by the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Council in "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019,

and "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10, 2014 and prescribed by the Canadian Securities Administrators' NI 43-101 and Form 43-101F1, Standards of Disclosure for Mineral Projects. Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability.

14.1 Introduction

Statistical analysis, three-dimensional (3D) modelling and resource estimation was completed by Mr. Tyler Acorn, M.Sc. with assistance from Mr. Warren Black, M.Sc., P.Geo., of APEX (under the direct supervision of Mr. Michael Dufresne, M.Sc., P.Geol.). Mr. Steven Nicholls, BA.Sc., MAIG, QP, APEX's senior resource geologist conducted a thorough internal audit of the MRE and Section 14. Mr. Dufresne takes full responsibility for Section 14 of this Technical Report. The workflow implemented for the calculation of the Pony Creek Property MRE was completed using the commercial mine planning software MICROMINE (v 21). Supplementary data analysis was completed using the Anaconda Python distribution (Continuum Analytics, 2017) and a custom Python package developed by Mr. Black and Mr. Acorn.

The 2019 drillhole database (DHDB) was validated by APEX geologists under the supervision of Mr. Dufresne, as summarized in Section 12.2. The 2019 DHDB and cross sections of the geological interpretations completed by Contact Gold geologist were utilized to construct an updated geological model for the Pony Creek Property. The geological model included a 3D model of the rhyolite intrusion, conglomerates, limestone, sandstone and various volcanic units. In the opinion of the Mr. Dufresne, the current Pony Creek Property DHDB is deemed to be in good condition and suitable to use in ongoing resource estimation studies.

The MRE was calculated using a block model size of 3 m (X) by 3 m (Y) by 3 m (Z). The gold grade was estimated for each block using Ordinary Kriging (OK) and was compared to Inverse Distance Weighting (IDW) estimation for validation. Locally varying anisotropy (LVA) was used to ensure grade continuity in various directions is reproduced in the block model. The block model was partially diluted by estimating a waste grade for the portions of the outer blocks overlapping the edge of the estimation domain boundaries using composites within a transition zone along the outer edge of the mineralized estimation domains. The waste grade was then proportionately combined with the estimated grade for the portion of the block within the mineralized domain to obtain a final grade for each overlapping block. The partially diluted block model was used in pit optimization studies only. The MRE is reported as undiluted within an optimized pit shell. Details regarding the methodology used to calculate the MRE are documented in this section. The mineral resources defined in this section are not mineral reserves.

Modeling was conducted in the Universal Transverse Mercator (UTM) coordinate space relative to the North American Datum (NAD) 1983, Zone 11N (EPSG:26911). The database consists of 373 drillholes containing useable downhole data completed at the Pony Creek Project between 1981 to 2019. APEX personnel constructed estimation domains using a combination of gold grade and all available geological information that

helped constrain different controls on mineralization. The estimation domains were used to subdivide the deposit into volumes of mineralized rock and the measured sample intervals within those volumes for geostatistical analysis.

14.2 Drillhole Data Description

14.2.1 Drillhole Data

Data from Contact Gold's 2017 to 2019 drilling program was captured and validated on-site during the drill program by Contact Gold personnel. APEX personnel completed a 10% check of the drillhole database comparing the digitally compiled database to original logs and certificates where available, as discussed in Section 12.2. In the opinion of Mr. Dufresne, the current Pony Creek drillhole database is deemed to be in good condition and suitable to use in ongoing resource estimation studies herein.

The Pony Creek database contains a total of 373 exploration drillholes (collars and assays) completed from 1981 to 2007 by previous operators (256 holes totalling 47,406 m) and between 2017 and 2019 by Contact Gold (118 holes totalling 25,921 m). Of the 373 drillholes, 211 intersected the estimation domains and were used in the MRE. The portion of the drillhole database used in the MRE consists of a total of 27,702 unique sample/interval entries (totally 42,423 m) of which 5,361 sample/interval entries (totalling 8,111 m) are within the estimation domains and were used in the Mineral Resource Estimation.

14.2.2 Mineral Resource Estimate Drillhole Database

For the 211 drillholes that intersect the mineralization domains, there are a total of 27,642 samples in the database that were assayed for gold. A total of 17,178 sample intervals returned a value greater than the detection limit. A total of 10,110 samples returned assays that were at or below the detection limit. A total of 3 intervals were not analyzed, and it is assumed that they were selectively not analyzed and classified as "no sample" (NS). A total of 14 drillhole sample intervals have explicit documentation that drilling did not return enough material to allow their analysis and are classified as "insufficient recovery" (IR). It is essential to distinguish between these two cases as they are treated differently during resource estimation. Intervals classified as "no sample" (NS) are assigned a nominal waste value of 0.0025 ppm Au, half the value of the lower detection limit of modern fire assay analyses. Samples that returned assays less then detection limit were assigned values of half the detections limit. Samples with unknown detection limits and/or assay methodologies and in the database as zero were assigned a value of 0.0025 ppm Au. Intervals classified as "insufficient recovery" (IR) were left blank.

All data was validated using the Micromine validation tools when the data was imported into the software. Any validation errors encountered were data entry errors rectified by consulting original documentation. A detailed discussion on the verification of drillhole data is provided in Sections 12.1 of this report. Mr. Dufresne considers the current

Pony Creek drillhole database to be in good condition and suitable for ongoing resource estimation studies

14.3 Mineralization Trend Surfaces

APEX personnel utilize mineralization trend surfaces to define the trend of mineralization for each domain. The mineralization trend surfaces are used to inform the modelling of the estimation domain boundaries and for defining locally varying anisotropic (LVA) or mineralization trend surface orientations used during the estimation process. These surfaces consider lithology, alteration, structure, assays and paleo water tables to create the given mineralization trend. APEX personnel created mineralization trend surfaces for the Appaloosa, Bowl and Stallion zones.

14.3.1 Geological Interpretation of Mineralization Domains

The Appaloosa Zone consists of a flat laying to sub-horizontal sandstone unit with a rhyolite cap. This sandstone – rhyolite package appears to be folded and overturned to the west. The mineralization is concentrated at the contact between the sandstone and rhyolite near the overturned fold hinge. There is another zone of mineralization closer to surface within the rhyolite which follows a more sub-horizontal orientation similar the to sandstone – rhyolite contact. APEX personnel modeled trend surfaces for both mineralization trends as shown in Figure 14.1

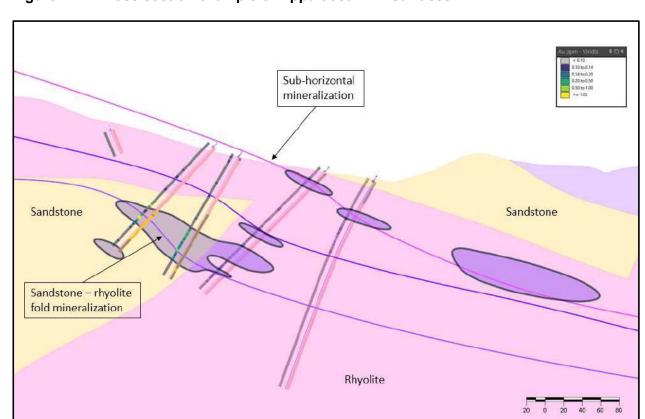


Figure 14.1. Cross section example of Appaloosa LVA surfaces.

Note for Figure 14.1: The cross section shows example of LVA surfaces in the Appaloosa Zone for the two main styles of mineralization. The estimation domains are shown as filled purple-grey outlines and downhole drill assays and geology are displayed.

The Bowl Zone consists of repeating packages of sandstone, conglomerate, and limestone with a rhyolite plug in the centre which spreads out laterally capping the repeating units. These units are offset by a series of steeply dipping faults that generally trend north to northwest. The main style of mineralization is sub horizontal and follows the contact between the rhyolite cap and the underlying units. Mineralization that follows this trend is found within the rhyolite plug in the centre of the Bowl Zone, as well as peripheral to the rhyolite plug (Figure 14.2). In places, mineralization is offset by faulting, however mineralization does not extend very far away from the rhyolite, so it is unclear how much of an affect faulting has had on mineralization. This mineralization is modeled as discrete trend surfaces in between fault blocks. The second mineralization style is a steeply east dipping pod of mineralization on the east edge of the Bowl Zone found within and near the rhyolite unit (Figure 14.3). This mineralization has a small north-south extension and is truncated by a fault further to the east which cuts off mineralization.

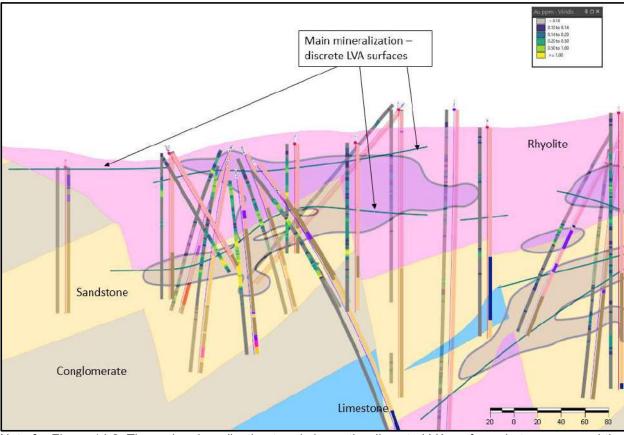


Figure 14.2. Cross section showing main Bowl Zone mineralization trend surfaces.

Note for Figure 14.2: The main mineralization trend shows the discrete LVA surfaces between around the modelled fault blocks.

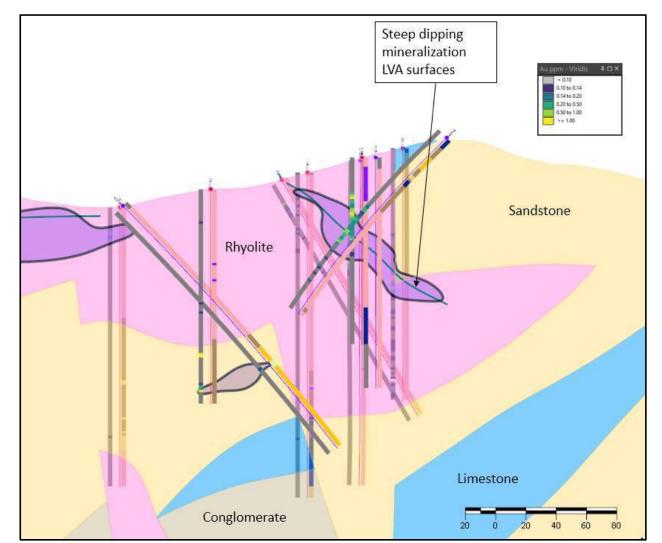


Figure 14.3. Cross section of trend surfaces on the east edge of the Bowl Zone.

Note for Figure 14.3: LVA surfaces at the eastern Bowl Zone show the secondary, steeply east dipping mineralization.

The Stallion Zone is broken up into north and south zones, but for resource purposes these areas are reported together.

The North Stallion Zone is not as well supported with only 12 drillholes penetrating the zone. All drillholes start and end within a thick sandstone unit. Minor intervals of limestone are logged but are not material and were not modeled. The mineralization trend is based off the downhole assays for each of the 12 drillholes. The trend surface of the North Stallion Zone is exclusively utilizing the drilling assays to inform the mineralization trend which is modeled sub-horizontal and concentrated right at surface (Figure 14.4).

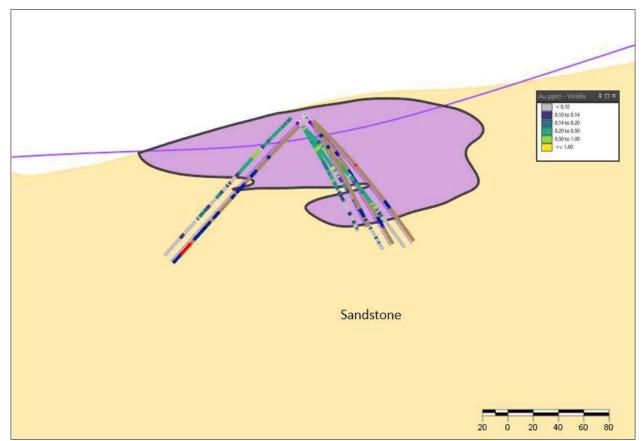
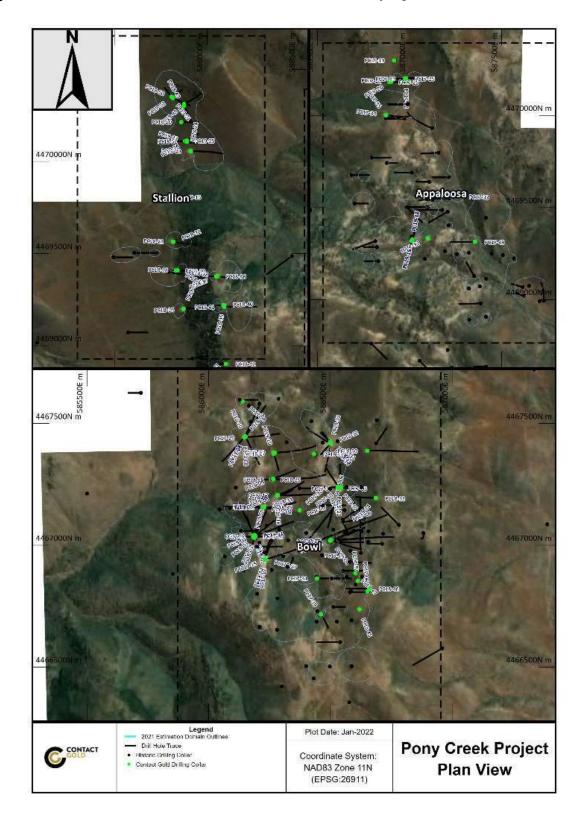


Figure 14.4. Cross section of North Stallion LVA (mineralization trend) surface.

Note for Figure 14.4: Cross section of Stallion North showing the sub-horizontal LVA surface as purple line and drillholes with geological logs on right and assay values on left.

The geology in the South Stallion Zone consists of a layered sandstone and limestone package on the west side of a conglomerate ridge that dip away from the ridge to the west. The conglomerate ridge is modeled as a vertical plug but there is no drilling that delineates the base of the conglomerate to understand its vertical extent. On the east side of the conglomerate ridge is a steeply east dipping rhyolite unit overlying a sandstone unit. Mineralization occurs where these packages intersect the conglomerate, as well as along the contact between different units. The LVA surfaces in this area follow the lithological contact between the sandstone and limestone on the west, and the rhyolite and sandstone on the east of the conglomerate ridge (Figure 14.5). The LVA surfaces deviate from the lithological contacts as mineralization bleeds into geological formations.




Figure 14.5. Cross section of South Stallion Zone LVA (mineralization trend) surfaces.

Note for Figure 14.5: The South Stallion Zone LVA surfaces on either side of conglomerate plug. On the right in red is the LVA surface steeply dipping to the east following the rhyolite and sandstone contact angles. On the left is the western LVA surface in purple following the sandstone and limestone contact angles.

14.4 Estimation Domain Interpretation

APEX personnel used an implicit modelling approach for constraining the estimation domains to a gold grade shell while still honouring interpretations of local geological controls on mineralization. The raw RC and core drillhole analytical data were composited and manually classified as either ore or waste. Those composites were then used as input by implicit modelling to generate the 3D estimation domain wireframes. The mineralization trend surfaces described in Section 14.3.1 are used as input for the implicit modelling process to ensure the generated estimation domain honours the observed geological controls on mineralization. The estimation domains were evaluated in 3D and on a section-by-section basis. Control points were inserted to constrain spurious features in the generated wireframes and ensure that the underlying geology was honoured. The control points were used in a second pass of the implicit model to construct the final estimation domain. Plan view of the extents of the estimation domain projected to surface with the drillhole collar locations is shown in Figure 14.6 and an east-west cross section showing the estimation domain, intrusion outline, and drill strings are shown in Figure 14.7.

Figure 14.6. Plan view of the estimation domains extents projected to surface.

Legend
UN 2020
Contract Cities
Colline

Figure 14.7. Example of the estimation domains outline in an east-west cross section looking north along 429825N (section window extends +/- 10 m).

14.5 Exploratory Data Analysis and Compositing

14.5.1 Bulk Density

Density measurements were acquired on 66 core samples between 2005 and 2017, and 5 core samples in 1985. Multiple measurements were acquired within the conglomerate, rhyolite, sandstone and siltstone units with sparse single sample measurements in other units. Correlation of density to gold grade was evaluated globally and within each lithological unit. No significant correlation between gold grade and density was observed. The mean density value from each unit was assigned to the block model based on greatest majority unit within each block (Table 14.1). A default value of 2.5 g/cm³ was used for the Volcanics unit.

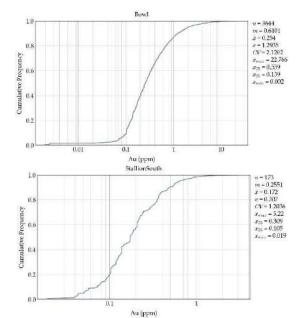
Table 14.1. Density values by Lithological Unit

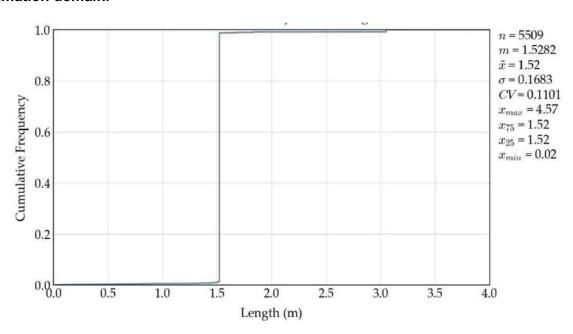
Lithology	SG (g/cm³)
Conglomerate	2.50
Limestone	2.50
Sandstone	2.45
Rhyolite	2.54
Volcanics	2.50

14.5.2 Raw Analytical Data

Cumulative histograms and summary statistics for the raw (un-composited) assays from sample intervals contained within the estimation domains are presented in Figure 14.8 and tabulated in Table 14.2. The assays within each estimation domain appear to exhibit a single coherent statistical population.

Figure 14.8. Cumulative frequency plot of raw gold assays (in ppm) from sample intervals flagged within the estimation domain.




Table 14.2. Summary statistics of raw gold assays (in ppm) from sample intervals flagged within the estimation domain.

	Au (ppm)					
	Global	Appaloosa	Bowl	Stallion North	Stallion South	
count	5,509	1,110	3,644	472	173	
mean	0.5006	0.3007	0.6101	0.2583	0.2551	
median	0.2230	0.1750	0.2540	0.2200	0.1720	
standard deviation	1.0847	0.4443	1.2935	0.1599	0.3070	
variance	1.1765	0.1974	1.6732	0.0256	0.0942	
coefficient of variation	2.1670	1.4777	2.1202	0.6192	1.2036	
min	0.0020	0.0020	0.0020	0.0025	0.0190	
25 percentile	0.1380	0.1213	0.1390	0.1500	0.1050	
50 percentile (median)	0.2230	0.1750	0.2540	0.2200	0.1720	
75 percentile	0.4530	0.3090	0.5590	0.3260	0.3090	
max	22.7660	7.9600	22.7660	1.2500	3.2200	

14.5.3 Compositing Methodology

Downhole sample length analysis shows sample lengths range from 0.02 m to 4.57 m, with the dominant sample length being 1.52 m (5 ft) as shown in Figure 14.9. A composite length of 3 m is selected as it provides adequate resolution for mining purposes, helped control the variogram models, and is equal to, or larger than all but 1 drillhole sample (Figure 14.9: Intervals that were not sampled or had insufficient recovery are not considered).

Figure 14.9. Cumulative histogram of the sample interval lengths analyzed within the estimation domain.

The length-weighted compositing process starts from the drillhole collar and ends at the bottom of the hole. However, the final composite intervals along the drillhole cannot cross contacts between estimation domains that demonstrate a hard boundary. Therefore, composites extending downhole are truncated when one of these contacts are intersected. A new composite begins at these contacts and continues to extend downhole until the maximum composite interval length is reached, or another truncating contact is intersected.

14.5.4 Orphan Analysis

Composites that do not reach their maximum allowed length are called orphans. Orphans are created during the truncation processes at contacts, as described in Section 14.4.3 or when a drillhole ends before the last composite reaches its final length. Considering all the orphans during the estimation process may introduce a bias. Therefore, gold's distribution was examined with and without orphans to determine if they should be deemed equivalent in importance to the full-length composite's estimation process. Three configurations are examined for this analysis:

- 1. Composites that are 3 m in length without any orphans;
- 2. Composites and orphans greater than or equal to 1.5 m in length; and
- 3. All composites and orphans.

It is common to observe a decrease in the mean when comparing the composite values to the original raw assay statistics. This decrease in the mean is typical when large un-sampled intervals (that are assigned a nominal waste value, as discussed in Section 14.2.2) are split into multiple smaller intervals and when the truncation of the composite creates redundant samples near the boundaries of the estimation domain. APEX ensured that the estimation domain boundaries are snapped to the start or end of raw sample intervals which will reduce the number of orphan samples significantly.

The completed orphan analysis for all gold assay composite samples contained within the estimation domains is presented in Figure 14.10 and Table 14.3. Figure 14.10 illustrates little difference between the distribution of composited metal grade with the various composite length scenarios. When comparing only the composites equal to 3 m to all composites, including the orphans, gold assays illustrate a mean change of $\pm 6.58\%$ when orphans are considered (Table 14.3). The 261 orphans that are ≥ 1.5 m in length are used when calculating the MRE. However, the 208 orphans that are < 1.5 m in length are not used to calculate the MRE as they are considered redundant.

Figure 14.10. Orphan analysis comparing global cumulative histograms of raw assays and uncapped composites with and without orphans contained within the estimation domain.

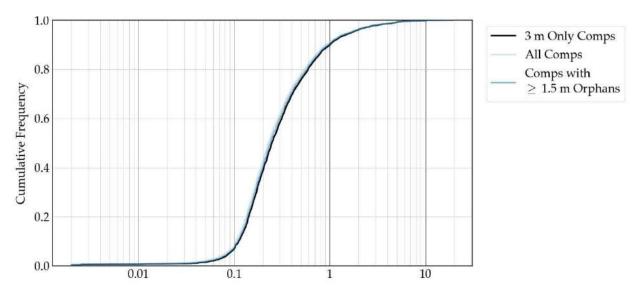


Table 14.3. Orphan analysis comparing the gold statistics (in ppm) of raw assays and uncapped composite samples with and without orphans.

		Au (ppm)		
	Uncomposited	Composited	3m Only	Comps with ≥ 1.5 m Orphans
count	5,509	3,082	2,613	2,874
mean	0.5006	0.4769	0.5093	0.4955
median	0.2230	0.2279	0.2477	0.2391
Standard deviation	1.0847	0.9236	0.9534	0.9475
variance	1.1765	0.8531	0.9089	0.8979
Coefficient of variation (CV)	2.1670	1.9368	1.8717	1.9122
min	0.0020	0.0020	0.0020	0.0020
25%	0.1380	0.1445	0.1558	0.1517
50%	0.2230	0.2279	0.2477	0.2391
75%	0.4530	0.4414	0.4852	0.4671
max	22.7660	19.4366	19.4366	19.4366

14.5.5 Capping

To ensure metal grades are not overestimated by including outlier values during estimation, composites are capped to a specified maximum value. Probability plots illustrating each composite's values are used to identify outlier values that appear higher than expected relative to each estimation domain's gold distribution. Composites

identified as potential outliers on the probability plots are evaluated in (3D) to determine if they are part of a high-grade trend or not. If identified outliers are deemed part of a high-grade trend that still requires a capping level, the level used on them may not be as aggressive as the capping level used to control isolated high-grade outliers.

The probability plots illustrated in Figure 14.11 of composited values indicate the capping levels for each estimation domain detailed in Table 14.4. Visual inspection of the potential outliers revealed they have no spatial continuity with each other. Therefore, the capping levels detailed in Table 14.4 are applied to all composites used to calculate the MRE.

Figure 14.11. Probability plot of the composited gold values before capping. Capped values highlighted in red.

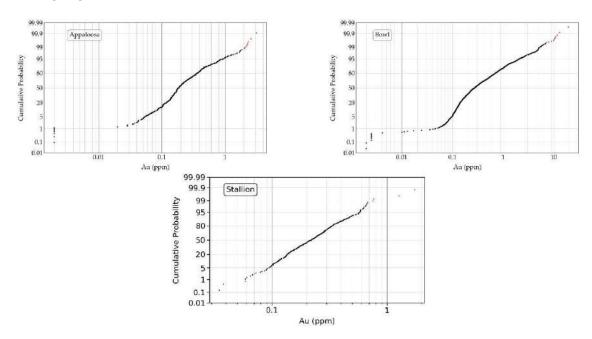


Table 14.4. Capping levels applied to composites before estimation.

Cappi	ng Levels Per Doma	in
Domain	Au (ppm)	# Samples Capped
Appaloosa	1.90	8
Bowl	6.90	10
Stallion (North & South)	0.70	4

14.5.6 Declustering

It is typical to collect data in a manner that preferentially samples high valued areas over low-value areas. This preferential sampling is an acceptable practice; however, it produces closely spaced measurements that are likely statistically redundant, which results in under-represented sparse data compared to the over-represented closer-

spaced data. Therefore, it is desirable to have spatially representative (i.e., declustered) statistics for global resource assessment and to check estimated models. Declustering techniques calculate a weight for each datum that results in sparse data having a higher weight than closely spaced data. The calculated declustering weights allow spatially representative summary statistics to be calculated, such as a declustered mean.

Cell declustering is performed globally on all composites within the estimation domains, which calculates a declustering weight for each composite. Cell declustering works by discretizing a 3D volume into cells that are the same size. The sum of the weights of all the composites within the cell must equal 1. Therefore, the weight assigned to each composite is proportional to the number of composites within each cell. For example, if there are four composites within a cell, they are all assigned a declustering weight of 0.25.

As a general rule of thumb, the cell size used to calculate declustering weights will ideally contain one composite per cell in the sparsely sampled areas. Visual evaluation of the sparsely sampled areas in a 3D visualization software gives a rough idea of this size. Additionally, a high-resolution block model populated with the distance to each block nearest composite can help guide the declustering of the cell size. The 90-percentile of the distance block model, with a cell size much lower than the final declustering cell size, approximates the optimal cell size. Finally, plotting a series of declustered means for a range of declustering cell sizes will help determine the optimal cell size. The optimal cell size will likely be when the declustered mean in the plot is locally low or high at a cell size that is very close to the two potential cell sizes that were determined from the visual review and calculated 90-percentile distance. Preferential sampling in high-grade zones results in a declustered mean that is likely within a local minimum. In contrast, preferential sampling in low-grade zones results in a declustered mean that is expected within a local maximum.

Calculated declustering weights for the estimation domain were constructed. Visual evaluation of the sparsely sampled areas in Micromine suggests similar cell sizes as the 90-percentiles from the distance block model for each estimation domain. Plots comprised of a series of declustered means for a range of declustering cell sizes were utilized to inform the final cell sizes. Table 14.5 details the cell size used, which was very close to the size indicated by the visual evaluation and distance block model.

Table 14.5. Cell sizes used to calculate declustering weights in the estimation domain.

Domain	Cell Declustering Size (m)
Appaloosa	30
Bowl	60
Stallion North	32
Stallion South	30

14.5.7 Final Composite Statistics

Cumulative histograms and summary statistics for the declustered and capped composites contained within the interpreted estimation domains, without orphans < 1.5 m, are presented in Figure 14.12 and tabulated in Table 14.6, respectively. The Gold assays within the estimation domain generally exhibit a single coherent statistical population.

Figure 14.12. Cumulative histogram of clustered and declustered composites inside the estimation domain.

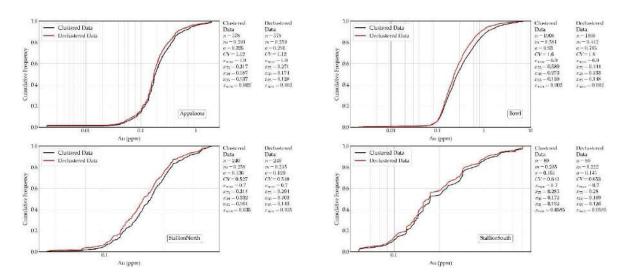


Table 14.6 Statistics of declustered composites inside the estimation domain.

			Au (ppn	1)	
	Global	Appaloosa	Bowl	Stallion North	Stallion South
count	2,874	578	1,908	240	89
mean	0.378	0.259	0.442	0.235	0.222
standard deviation	0.598	0.291	0.705	0.129	0.145
variance	0.358	0.085	0.497	0.017	0.021
coefficient of variation (CV)	1.581	1.124	1.593	0.546	0.655
min	0.002	0.002	0.002	0.035	0.059
25%	0.152	0.137	0.159	0.164	0.133
50%	0.239	0.187	0.273	0.232	0.172
75%	0.467	0.317	0.589	0.313	0.283
max	6.900	1.900	6.900	0.700	0.700

14.6 Variography and Grade Continuity

Experimental semi-variograms for each domain are calculated along the major, minor, and vertical principal directions of continuity that are defined by three Euler angles. Euler angles describe the orientation of anisotropy as a series of rotations (using a left-hand rule) that are as follows:

- 1. Angle 1: A rotation about the Z-axis (azimuth) with positive angles being clockwise rotation and negative representing counter-clockwise rotation;
- 2. Angle 2: A rotation about the X-axis (dip) with positive angles being counterclockwise rotation and negative representing clockwise rotation; and
- 3. Angle 3: A rotation about the Y-axis (tilt) with positive angles being clockwise rotation and negative representing counter-clockwise rotation.

14.6.1 Estimation Domain Variography

Using the correlogram algorithm, calculated gold experimental variograms were completed using the composites within the estimation domain. Table 14.7 details the final variogram model parameters used by Kriging. All variogram models used in Table 14.7 are illustrated in Figures 14.13-14.15. As described in Section 14.7, estimation uses locally varying anisotropy (LVA) that defines the variogram's orientation on a per-block basis. The three Euler angles described in Table 14.6 are not used during estimation, as they are only used to calculate the experimental variogram.

Table 14.7 Variogram model parameters.

								St	ructure 1					Structu	re 2	
Zone Variable	ble Ang1 Ang2		Ang2 Ang3		CO	N T	Ranges (m)		7/2 	-	R	anges (m)			
							Туре	C1	Major	Minor	Vertical	Type	C2	Major	Minor	Vertica
Apaloosa	Au	262	-16	0	2.20	0.44	Exp	1.32	15	15	15	Sph	0.44	40	25	15
Bowl	Au	180	-25	0	0.83	0.17	Exp	0.50	15	15	8	Sph	0.17	80	65	20
Stallion North	Au	40	-2	0	2.20	0.44	Exp	1.32	25	12	10	Sph	0.44	80	60	20

sph: spherical, exp: exponential; C0: nugget effect; C1: covariance contribution of structure 1; C2: covariance contribution of structure 2; LVA - locally varying anisotropy

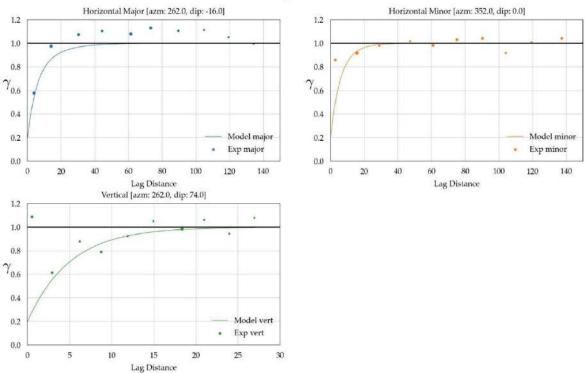
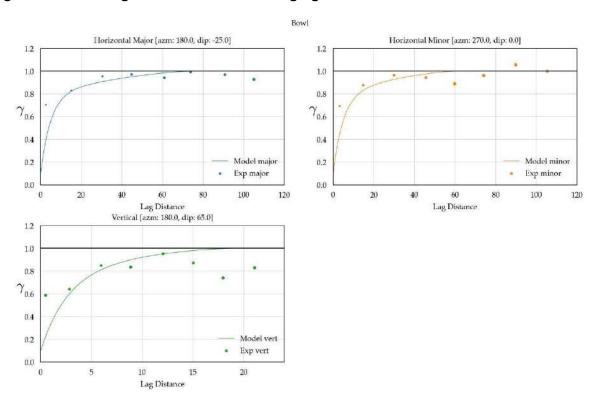



Figure 14.14. Variogram Model used for Kriging: Bowl Domain.

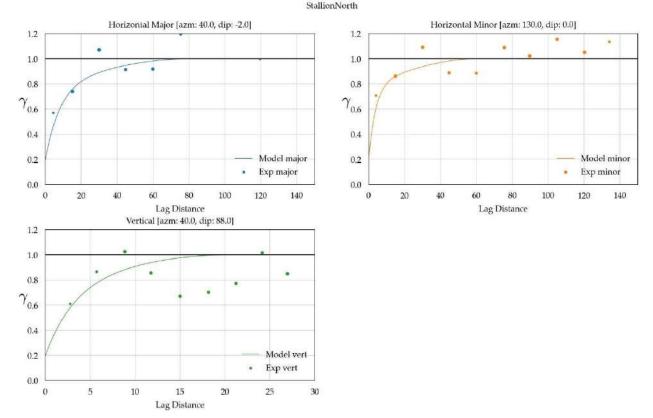


Figure 14.15. Variogram Model used for Kriging: Stallion North/South Domains.

14.6.2 Contact Analysis

The mineralization profile at the contact between the estimation domain and the waste rock can occur in a soft, hard or semi-soft manner. Soft boundaries occur when mineralization at the contact gradually changes from high to low as you cross into the neighbouring domain. Hard boundaries occur when mineralization at the contact abruptly changes as you cross into the neighbouring domain. Semi-soft boundaries occur when mineralization changes gradually within a small window as you cross into the neighbouring domain. If possible, the final block model should reproduce the mineralization profile observed in the drillhole data at contacts between domains. A contact analysis was completed to evaluate the mineralization profile at the estimation domain and waste rock contact using plots of grade as a function of distance to the contact to determine the type of mineralization profile as shown in Figure 14.16. The resultant analysis illustrates a hard boundary for the Bowl, Appaloosa and Stallion South Estimation Domains and a semi-soft boundary for the Stallion North estimation domain.

Inside Domain (-) Outside Domain (+) Inside Domain (-) Outside Domain (+) 0.8 0.4 Bowl Appaloosa 0.6 0.3 0.2 0.2 0.1 0.0 Au (ppm) 0.5 Inside Domain (-) Inside Domain (-) Outside Domain (+) Outside Domain (+) 0.4 0.4 Stallion North Stallion South 0.3 0.2 0.2 0.1 0.1 0.0 0.0

Figure 14.16. Contact Analysis. Average gold grade in g/t (blue line) as a function of the distance* to the edge of the estimation domain.

14.7 Mineral Resource Estimate Block Model

14.7.1 Block Model Parameters

A per cent (block factor) style block model was used for the calculation of the Pony Creek MRE. A separate block model fully encapsulating each estimation domain was used for the resource estimation described in Section 14.3. All block models used the same block size of 3 m (9.84 ft) by 3 m (9.84 ft) by 3 m (9.84 ft) and the same block model grid. The coordinate ranges and block size dimensions used to build the 3D block model for each estimation domain can be found in Tables 14.8-14.11.

Distance (m)

Table 14.8. 3D block model size and extents: Appaloosa Domain.

Axis	Block Size	Minimum Extent	Maximum Extent
AXIS	(m)	(m)	(m)
X (Easting)	3	586683	587733
Y (Northing)	3	4468392	4470237
Z (Elevation)	3	1665	2232

Table 14.9. 3D block model size and extents: Bowl Domain.

Axis	Block Size (m)	Minimum Extent (m)	Maximum Extent (m)
X (Easting)	3	586023	586689
Y (Northing)	3	4466424	4467627
Z (Elevation)	3	1821	2247

Table 14.10. 3D block model size and extents: Stallion North Domain.

Axis	Block Size (m)	Minimum Extent (m)	Maximum Extent (m)		
X (Easting)	3	585714	586092		
Y (Northing)	3	4469949	4470495		
Z (Elevation)	3	2055	2247		

Table 14.11. 3D block model size and extents: Stallion South Domain.

Axis	Block Size (m)	Minimum Extent (m)	Maximum Extent (m)		
X (Easting)	3	585480	586245		
Y (Northing)	3	4469079	4469829		
Z (Elevation)	3	2022	2343		

A block factor (BF) representing the percentage of each block's volume that lies within each estimation domain was calculated and used to:

- flag what the estimation domain is for each block;
- calculate the volume of mineralized material and waste for each block; and
- calculate the tonnes of mineralized material of each block when calculating the MRE.

14.7.2 Volumetric Checks

A comparison of estimation domain wireframe volumes versus block model volumes illustrates there is no considerable over-stating or under-stating of tonnages, Table 14.12. The calculated block factor for each block is used to scale its volume when calculating the block model's total volume within each estimation domain.

Table 14.12. Estimation domain wireframe versus block-model volume comparison.

	Wireframe	Block Model Volume	Volume	
Wireframe	Volume	with Block Factor	Difference	
	(m3)	(m3)	(%)	
Appaloosa	11,957,845	11,957,845	0.000%	
Bowl	15,246,954	15,246,954	0.000%	
Stallion North	4,410,057	4,410,057	0.000%	
Stallion South	1,607,244	1,607,244	0.000%	

14.8 Grade Estimation Methodology

Ordinary Kriging (OK) was used to estimate gold grades for the Pony Creek Project block model. Only blocks that intersect the mineralization domain were estimated for gold grades.

Estimation of blocks is completed with locally varying anisotropy (LVA), which uses different rotation angles to define the principal directions of the variogram model and search ellipsoid on a per-block basis. Blocks within the estimation domain are assigned rotation angles using a trend surface wireframe. This method allows structural complexities to be reproduced in the estimated block model. Variogram and search ranges are defined by the variogram model described in Section 14.5.

To ensure that all blocks within the estimation domains are estimated and the correct volume variance relationship is achieved, a three-pass method was used for each domain. Each pass uses the same variogram model, as modelled and detailed in Section 14.5, however different search ellipsoid configurations are used, as illustrated in Table 14.13. Different search ellipsoid configurations are used to control the smoothing inherit in Kriging and manage influence of high-grade samples in order to achieve the correct volume variance relationship. The three passes are normally not required because the blocks estimated during those passes are far from composites, but because of structural complexities and the limitation of search ellipses not being able to look along the trend of the folds they were utilized here. In the Bowl domain, the maximum distance between an estimated block and its closest composite is 120 m (393 ft), however, 95% of the blocks are 68.7 m (or closer) to a composite. In the Appaloosa domain, the maximum distance between an estimated block and its closest composite is 120 m (393 ft), however, 95% of the blocks are 103.5 m (or closer) to a composite. In the Stallion domain, the maximum distance between an estimated block and its closest composite is 120 m (393 ft), however, 95% of the blocks are 104.7 m (or closer) to a composite.

Table 14.13. Estimation Search and Kriging Parameters.

Domain	Zone	Variogram Euler Angles		Max Search Ranges			N Search	Max Samples	Max Samples	
		1	2	3	Major	Minor	Vertical	Sectors	per Sector	per DH
Appaloosa	Pass 1	LVA	LVA	LVA	40	25	10	4	4	3
	Pass 2	LVA	LVA	LVA	80	50	15	2	8	4
	Pass 3	LVA	LVA	LVA	160	100	30	2	6	2
Bowl	Pass 1	LVA	LVA	LVA	32	26	8	4	3	2
	Pass 2	LVA	LVA	LVA	80	65	20	4	3	3
	Pass 3	LVA	LVA	LVA	160	100	40	2	6	4
Stallion North	Pass 1	LVA	LVA	LVA	40	30	10	2	6	5
	Pass 2	LVA	LVA	LVA	80	60	20	1	16	12
	Pass 3	LVA	LVA	LVA	160	120	40	1	16	12
Stallion South	Pass 1	LVA	LVA	LVA	40	30	10	2	6	4
	Pass 2	LVA	LVA	LVA	80	60	20	1	12	6
	Pass 3	LVA	LVA	LVA	160	120	40	1	12	8

The correct volume-variance relationship is enforced by restricting the maximum number of conditioning data (composites) within ellipsoid sectors, the maximum number of composites per drillhole and the maximum number of conditioning data per search ellipsoid sector used. These restrictions are implemented to ensure the estimated models are not over smoothed and to limit the effect of high-grade samples, which would lead to inaccurate estimation of global tonnage and grade. The parameters used to enforce the right volume-variance relationship cause local conditional bias but ensure the global estimate of grade and tonnes is accurately estimated.

Blocks that are partially outside of the domain and therefore contain a percentage of waste by volume are diluted by estimating a waste gold value that is volume-weight averaged with the estimated gold grade. It is desired that the behaviour of gold at the boundary between the estimation domain and waste beyond its boundary is reproduced. The nature of gold mineralization at the mineralized/waste contact is evaluated and used to determine a window to flag composites that are used to condition a waste gold estimate for blocks containing waste material. As illustrated in Section 14.5.2, gold behaves in a hard manner, where the grade of the composite centroids flagged within an estimation domain sharply transitions from mineralized to waste over a short window. Composites within a window of 3 m into waste and 0 m into the estimation domain are used to estimate a waste gold value. Blocks containing waste values are assigned a volume weighted gold grade for the Lerchs-Grossman (LG) pit optimizations. The reported MRE is undiluted.

14.9 Model Validation

Visual and statistical validation was completed to ensure that the estimated block model honours directional trends observed in the composites and that the block model is not over-smoothed or over- or under-estimated with respect to grade

14.9.1 Statistical Validation

APEX personnel performed three varying statistical validation methods to ensure the estimated block model honours the input drillhole data. Swath plots are used to check that the block model honours directional trends, Volume-variance analysis is used to check that the proper quantity of minerals above varying cut-off grades are being estimated, and boundary analysis is performed to check that the observed grade trends along the mineralized and un-mineralized boundaries are being reproduced in the block models.

14.9.1.1 Directional Trend Analysis Validation

Swath plots verify that the estimated block model honours directional trends and identifies potential areas of over- or under-estimation in grade. They are generated by calculating the average metal grades of composites, the OK estimated blocks, and the IDW estimated blocks within directional slices.

The generated swath plots are illustrated in Figures 14.17-14.20. Overall, the block model compares well with the composites. There is some local over- and underestimation observed. Due to the limited number of conditioning data available for the estimation in those areas, this is the expected result.

Figure 14.17. Swath plots: Appaloosa Domain. Swath Plots are Northing, Easting, and Elevation Sections with the indicated +/- window.

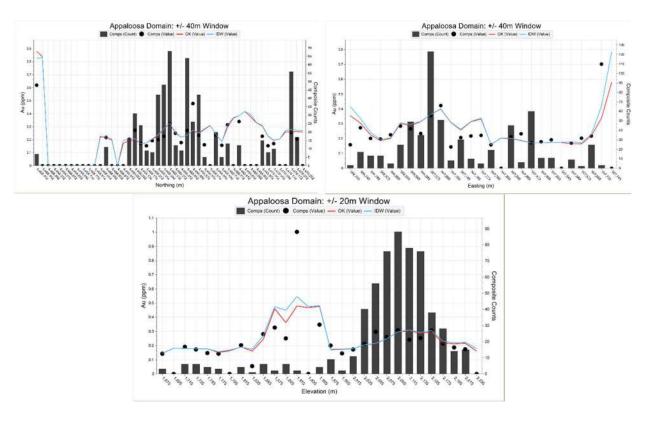


Figure 14.18. Swath plots: Bowl Domain. Swath Plots are Northing, Easting, and Elevation Sections with the indicated +/- window.

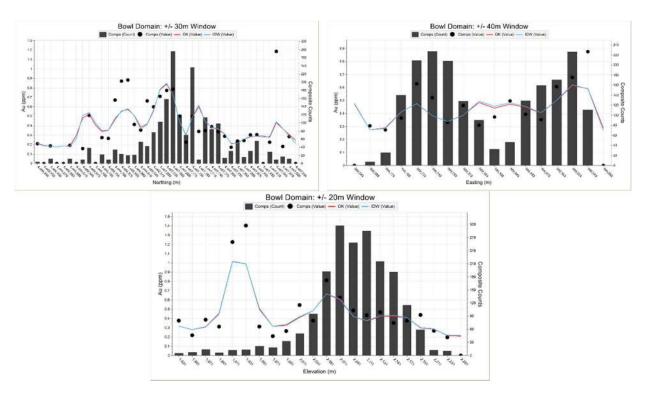
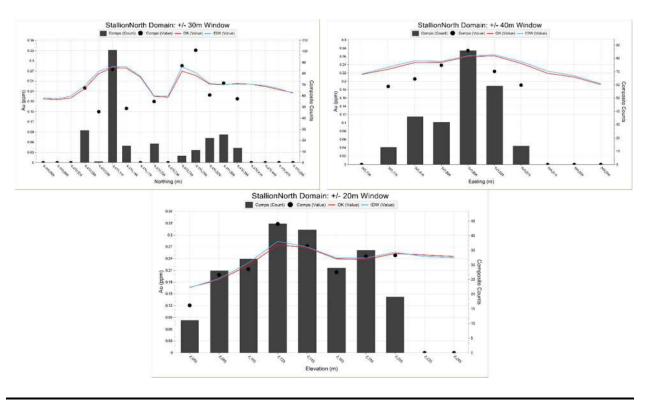
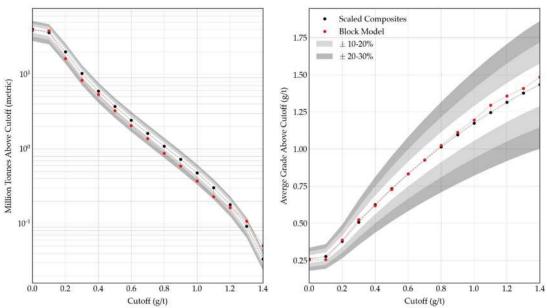



Figure 14.19. Swath plots: North Stallion Domain. Swath Plots are Northing, Easting, and Elevation Sections with the indicated +/- window.

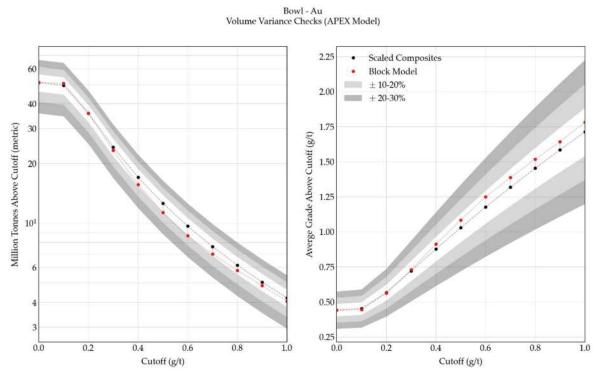
StallionSouth Domain: +/- 40m Window
Green Grand Grand

Figure 14.20. Swath plots: South Stallion Domain. Swath Plots are Northing, Easting, and Elevation Sections with the indicated +/- window


14.9.1.2 Volume-Variance Analysis Validation

Smoothing is an intrinsic property of Kriging, and as described in Section 14.7 volume-variance corrections are used to help reduce its effects. To verify that the correct level of smoothing is achieved, theoretical histograms that indicate each estimated metal's anticipated variance and distribution at the selected block model size are calculated. The scaled composite histograms are used to calculate expected tonnages and expected grades above a series of cut-off grades. Comparing the curves of the expected versus estimated values helps ensure the correct volume of resource above varying cut-offs is being estimated.

The grade/tonnage curves used to validate the estimated block model for each of the estimation domains are shown in Figures 14.21-14.24. Smoothing is observed; however, further modifications of the search strategy to help control the smoothing will introduce bias to the gold estimates. In the Bowl domain block model, the theoretical models and the estimated models are similar in distribution with slight over estimation of grade and a slight underestimation of tonnages above the calculated cut-offs in the estimated block model, Figure 14.22.


Figure 14.21. Volume variance grade/tonnage curves: Appaloosa Domain.

Appaloosa - Au Volume Variance Checks (APEX Model)

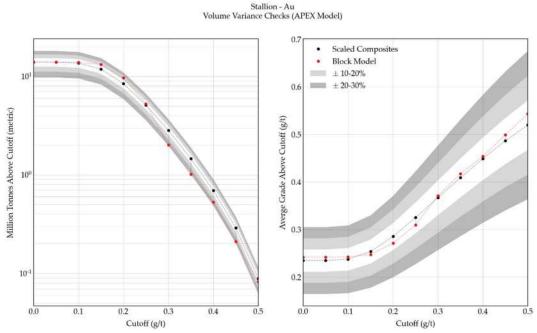

Note: The scaled composites grade/tonnage curves are calculated using the assay composites weighted by the declustering weights and scaled to the estimation block size using the Discrete Gaussian Model and the volume/variance relationship.

Figure 14.22. Volume variance grade/tonnage curves: Bowl Domain.

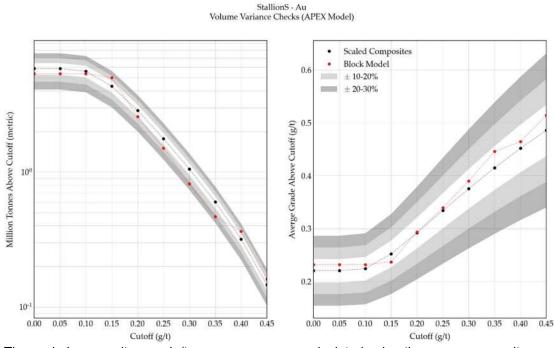

Note: The scaled composites grade/tonnage curves are calculated using the assay composites weighted by the declustering weights and scaled to the estimation block size using the Discrete Gaussian Model and the volume/variance relationship.

Figure 14.23. Volume variance grade/tonnage curves: North Stallion Domain.

Note: The scaled composites grade/tonnage curves are calculated using the assay composites weighted by the declustering weights and scaled to the estimation block size using the Discrete Gaussian Model and the volume/variance relationship.

Figure 14.24. Volume variance grade/tonnage curves: South Stallion domain.

Note: The scaled composites grade/tonnage curves are calculated using the assay composites weighted by the declustering weights and scaled to the estimation block size using the Discrete Gaussian Model and the volume/variance relationship.

14.9.1.3 Boundary Analysis Validation

As described in Section 14.7, blocks within the Pony Creek block models that are partially outside of the mineralization domain, and therefore contain some waste by volume, are diluted using the estimated waste gold and mineralized domain gold values. Ideally, the nature of gold mineralization at the mineralized zone/waste contact observed in the composites is reproduced in the block model. A contact analysis plot checking contact profile reproduction is illustrated in Figure 14.25. The mineralized zone/waste contact profile is adequately reproduced.

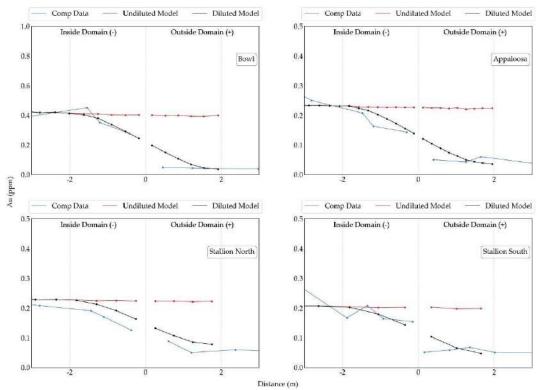


Figure 14.25. Contact analyses along domain boundaries.

Note for Figure 14.25: The contact analysis shows average gold grade (g/t) by distance to the domain edge of the composite data, undiluted block model and diluted block model. Negative distances are inside domain and positive distances represent outside of the domain.

14.9.2 Visual Validation

APEX visually reviewed the estimated block model grades in sectional views comparing the estimated block model grades to the input composited drillhole assays and the modelled mineralization trends. Examples for each domain are illustrated below in Figures 14.26-14.31.

Ligand

- 1737-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700.

- 275-700

Figure 14.26. Visual validation cross section looking East: Appaloosa Domain.

Figure 14.27. Visual validation cross section looking North: Appaloosa Domain.

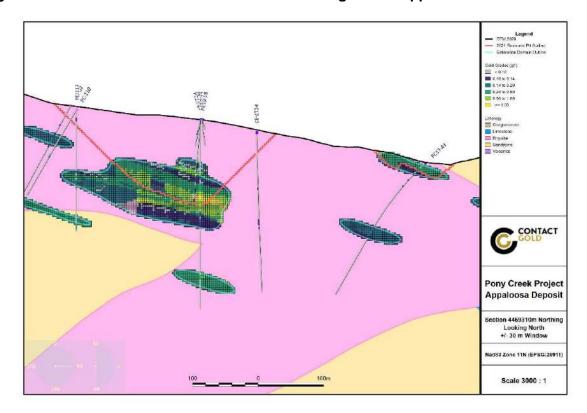


Figure 14.28. Visual validation cross section looking East: Bowl Domain.

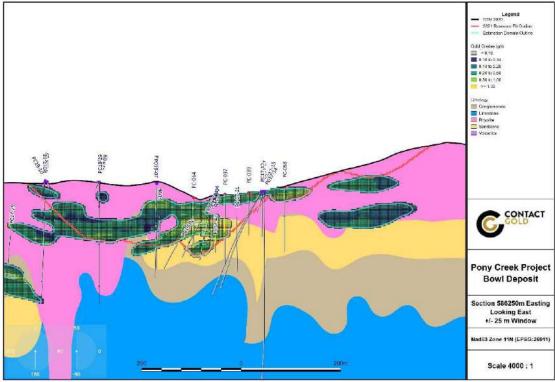


Figure 14.29. Visual validation cross section looking North: Bowl Domain.

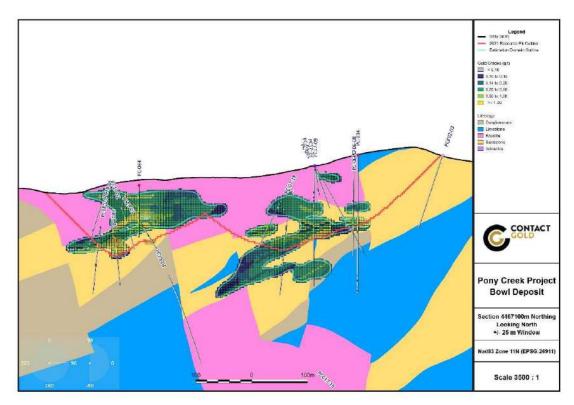


Figure 14.30. Visual validation cross section looking East: North Stallion Domain.

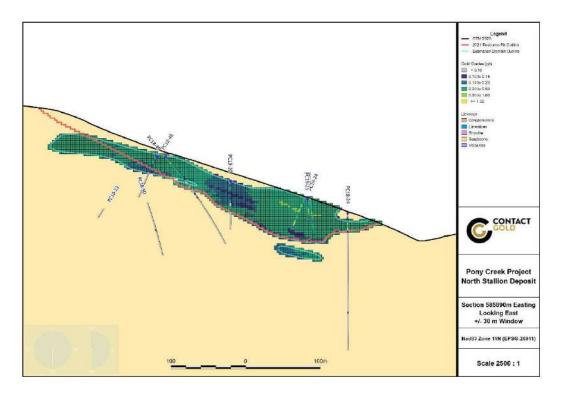
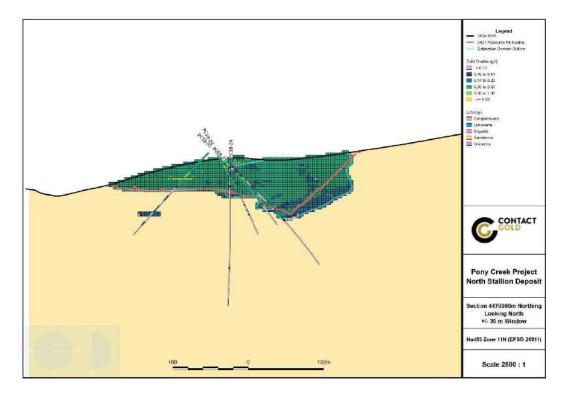



Figure 14.31. Visual validation cross section looking North: North Stallion Domain

14.10 Mineral Resource Classification

The Pony Creek MRE discussed in this report has been classified in accordance with guidelines established by the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 14th, 2014.

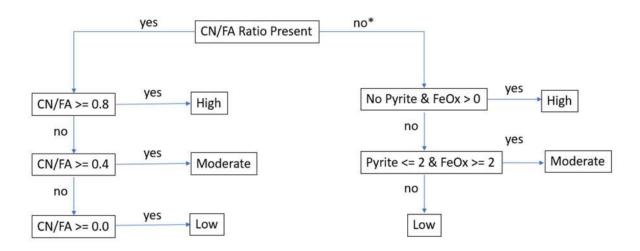
A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit. Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation. A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit. Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation. An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity. An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

The 2022 Pony Creek MRE is classified as Inferred according to the CIM definition standards. The classification of the Inferred Resources is based on geological confidence, data quality and grade continuity of that data. The most relevant factors used in the classification process were:

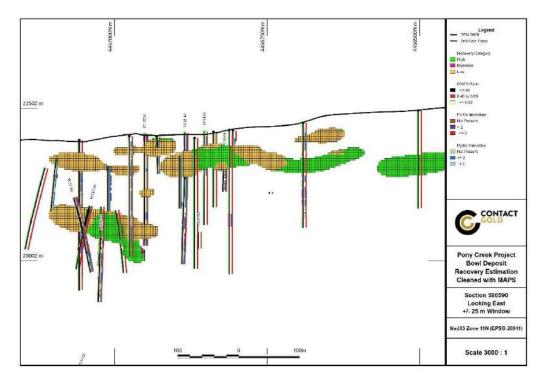
- density of conditioning data;
- level of confidence in drilling results and collar locations;
- level of confidence in the geological interpretation;
- continuity of mineralization;
- level of confidence in the assigned densities; and
- metallurgical information available for potential recoveries.


Resource classification was determined by assessing the geological and estimation confidence within the estimation domains and the uncertainty in the quantity and quality of estimated gold ounces. APEX personnel performed a data density analysis of the blocks within the domains. All blocks that did not meet a minimum data density requirement of at least 1 drillhole and 3 composites within a search ellipsoid of 120 m (393 ft) in the major direction, 90 m (295 ft) in minor direction, and 30 m (98 ft) in the vertical direction; were classified as "Exploration Targets," and were removed from the mineral resource block models. All blocks that met the minimum data density requirements were classified as inferred. Drill density in the Bowl Zone could support a higher classification for portion of the mineral resource. The factors limiting the resource classification to inferred are discussed in Section 14.13.

14.11 Evaluation of Reasonable Prospects for Eventual Economic Extraction

To demonstrate that the Pony Creek Property has the potential for future economic extraction, recovery was estimated based on the assay and geological logged information available, and the unconstrained and partially diluted resource block model was subjected to several pit optimization scenarios to look at the prospect for eventual economic extraction. Pit optimization was performed in Micromine using the industry standard Lerchs-Grossman algorithm (LG).

APEX personnel merged the assay interval data with the geological log data and flagged intervals with recovery using a combination of cyanide assay versus fire assay ratios, and oxidation logging data in the form of pyrite alteration intensities and iron oxide alteration intensities. Figure 14.32 illustrates the metric used to determine "High", "Moderate", and "Low" recovery categories. The High recovery category is based on a cyanide to fire assay ratio of greater than or equal to 0.8, or if no cyanide to fire assay ratios are available then no pyrite alteration and iron oxide alteration is present. The Moderate recovery category is based on a cyanide to fire assay ratio of greater than or equal to 0.4, or if no cyanide to fire assay ratios are available then pyrite alteration is less than or equal to 2 and iron oxide intensities must be 2 or greater. Everything else was categorized as Low recovery.


Figure 14.32. Drillhole data recovery decision metric.

*Pyrite and FeOx Intensity was logged on an intensity scale of 0 to 5 with 5 being most intense

After flagging the interval data with assumed recovery categories, APEX personnel flagged the block model using a combination of Nearest Neighbor indicator estimation and the MAPS (maximum a-posterior selection) smoothing algorithm to clean up artifacts caused by the nearest neighbor flagging. An example of the recovery model is shown below in Figure 14.33.

Figure 14.33. Estimated recovery categories.

The criteria used in the LG pit optimizer were considered reasonable for a Carlin style deposit with the potential for heap leach and vat leach style processing. All mineral resources reported below are reported within an optimized pit shell using US\$1,600/oz for gold and was defined using blocks classified as Indicated or Inferred. The criteria used for the US\$1,600/oz pit shell optimization are shown in Table 14.14. A variable lower gold grade cutoff and recovery is used based on the processing method chosen. Two processing methods were chosen: vat leaching for blocks above a mining cut-off grade of 0.223 g/t and categorized as either Moderate or Low recovery; and heap leach for High recovery blocks with grade below the vat cut-off and above a mining cut-off grade of 0.149 g/t. The cut-off grades are based on a mining cut-off grade calculation, Equation 14.1, using the mining parameters in Table 14.14.

$$COG_{mining} = \frac{Cost_{processing} + Cost_{mining\ ore}}{Recovery_{ore} * (SalePrice - RefiningUnitCost)}$$
(14.1)

Mr. Dufresne considers the Lerchs-Grossman pit parameters presented in Table 14.14 appropriate to evaluate the reasonable prospect for potential future economic extraction at the Pony Creek Property for the purpose of providing a MRE. The resources presented herein are not mineral reserves, and they do not have demonstrated economic viability. There is no guarantee that any part of the resources identified herein will be converted to a mineral reserve in future.

Table 14.14. Parameters for Lerchs-Grossman pit optimization for the Mineral Resource Estimate.

Parameter	Unit	Cost
Gold price	\$US/ounce	1,600
Gold Recovery	%	VAT – 85; HL - 75
Gold Sale price	\$US/ounce	0.75
Pit wall angles	degrees	45
Ore Mining Cost	US\$/ton	2.00
Waste Mining Cost	US\$/ton	1.90
Density	gcm	variable
Processing Cost	US\$/ton ore	VAT – 7.00; HL – 3.00
G & A Cost	US\$/ton ore	0.75
Royalty	percent	0.0

14.12 Mineral Resource Reporting

The Pony Creek Property MRE is reported in accordance with the CSA NI 43-101 rules for disclosure and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10, 2014.

The MRE was estimated within three-dimensional (3D) solids that were created from the implicit modeling interpretation of geology and grade shells. The upper contact has been cut by the topographic surface. Where there is overburden modeled, the upper contact was subsequently cut by the overburden surface. Grade was estimated into a block model with a block size of 3 m (X) by 3 m (Y) by 3 m (Z).

Grade estimation of gold was performed using Ordinary Kriging (OK). For the purposes of the pit shell optimization, blocks that contain waste were diluted by estimating a waste value using composites within a transition zone along the outer boundary of the estimation domains. The final diluted gold grade for the diluted model assigned to each block is a volume-weighted average of the estimated gold and waste grade values. The diluted model was utilized for the pit optimization. The MRE is reported within a pit shell and is undiluted.

The Pony Creek MRE is reported by domain with a variable cut-off grade and is presented in Table 14.15. Heap leach material uses a lower cut-off grade of 0.15 g/t and VAT material uses a lower cut-off grade of 0.22 g/t. The Inferred MRE is undiluted and constrained within an optimized pit shell. The Inferred resource includes 28.4 million Tonnes of mineralized material at an average gold grade of 0.52 g/t for a total of 433,000 ounces.

Table 14.15. The recommended reported resource estimate constrained within the "\$1,600/oz" pit shell ¹⁻⁵.

Domain	Au Cutoff (grams per tonne)	Tons ¹ (907.2 kg)	Tonnes ¹ (1000 kg)	Avg Au (troy ounces per ston)	Avg Au (grams per tonne)	Au ¹ (troy ounces)	Class ²
Appaloosa	Mixed	2,059,000	1,868,000	0.015	0.50	30,000	Inferred
Bowl	Mixed	18,457,000	16,744,000	0.018	0.63	340,000	Inferred
Stallion	Mixed	7,834,000	7,107,000	0.008	0.27	63,000	Inferred
TOTAL	Mixed	28,350,000	25,719,000	0.015	0.52	433,000	Inferred

¹ Contained Tonnes and ounces may not add due to rounding.

Mineral Resources can be sensitive to the selection of the reporting cut-off grade. For sensitivity analysis other cut-off grades are presented for review. The Appaloosa domain sensitivity analysis is presented in Table 14.16 ranging from 0.1 g/t Au to 0.5 g/t Au cut-off grades. The Bowl domain sensitivity analysis is presented in Table 14.17 ranging from 0.1 g/t Au to 1 g/t Au cut-off grades. The Stallion domain sensitivity analysis is presented in Table 14.18 ranging from 0.1 g/t Au to 0.5 g/t Au cut-off grades.

² Mineral resources are not mineral reserves and do not have demonstrated economic viability. The Inferred MRE is undiluted and constrained within an optimized pit shell constructed using a gold price of US\$1600 per oz. The estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues. There is no certainty that Mineral Resources will be converted to Mineral Reserves.

^{3.} The Inferred Mineral Resource in this estimate has a lower level of confidence than that applied to Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of the Inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

^{4.} The Mineral Resources in this MRE were estimated in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions (2014) and Best Practices Guidelines (2019) prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council.

^{5.} The constraining pit optimization parameters were US\$1.9/t mineralized and US\$2/t waste material mining cost, VAT processing cost of US\$7/t, US\$3/t HL processing cost, US\$0.75/t G&A, 45-degree pit slopes with a 0.149g/t Au Heap-leach lower cut-off, and 0.223g/t CIL tank cut-off.

Table 14.16. Appaloosa domain sensitivity analysis of the undiluted ounces constrained within the "\$1,600/oz" pit shell ¹⁻³.

Cutoff (g/t)	Tons (907.2 kg) ¹	Tonnes (1000 kg) ¹	Avg Grade (ozt/st)	Avg Grade (g/t)	Contained Ounces ¹	Class ²
0.1	2,738,000	2,484,000	0.012	0.42	33,000	
0.15	2,415,000	2,191,000	0.013	0.46	32,000	
0.2	2,003,000	1,817,000	0.015	0.52	30,000	Informad
0.3	1,617,000	1,467,000	0.017	0.58	27,000	Inferred
0.4	1,278,000	1,159,000	0.019	0.64	24,000	
0.5	858,000	778,000	0.021	0.73	18,000	

¹ Contained Tonnes and ounces may not add due to rounding.

Table 14.17. Bowl domain sensitivity analysis of the undiluted ounces constrained within the "\$1,600/oz" pit shell ¹⁻³.

Cutoff (g/t)	Tons (907.2 kg) ¹	Tonnes (1000 kg) ¹	Avg Grade (ozt/st)	Avg Grade (g/t)	Contained Ounces ¹	Class ²
0.1	23,594,000	21,404,000	0.015	0.53	364,000	
0.15	21,551,000	19,550,000	0.017	0.57	357,000	
0.2	18,631,000	16,902,000	0.018	0.63	342,000	
0.3	13,504,000	12,250,000	0.023	0.77	305,000	
0.4	9,460,000	8,582,000	0.028	0.96	264,000	Inferred
0.5	7,206,000	6,538,000	0.033	1.12	235,000	
0.6	5,628,000	5,105,000	0.037	1.28	210,000	
0.8	3,948,000	3,582,000	0.045	1.53	176,000	
1	2,798,000	2,538,000	0.052	1.79	146,000	

¹ Contained Tonnes and ounces may not add due to rounding.

^{2.} The Inferred Mineral Resource in this estimate has a lower level of confidence than that applied to the Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of the Inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

^{3.} The Mineral Resources in this MRE were estimated in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions (2014) and Best Practices Guidelines (2019) prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council.

^{2.} The Inferred Mineral Resource in this estimate has a lower level of confidence than that applied to the Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of the Inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

^{3.} The Mineral Resources in this MRE were estimated in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions (2014) and Best Practices Guidelines (2019) prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council.

Table 14.18. Stallion domain sensitivity analysis of the undiluted ounces constrained within the "\$1,600/oz" pit shell ¹⁻³.

Cutoff (g/t)	Tons (907.2 kg) ¹	Tonnes (1000 kg) ¹	Avg Grade (ozt/st)	Avg Grade (g/t)	Contained Ounces ¹	Class ²
0.1	8,033,000	7,287,000	0.008	0.27	63,000	
0.15	7,878,000	7,146,000	0.008	0.27	63,000	
0.2	6,672,000	6,053,000	0.008	0.29	56,000	Informed
0.3	2,076,000	1,883,000	0.011	0.38	23,000	Inferred
0.4	741,000	672,000	0.013	0.46	10,000	
0.5	146,000	133,000	0.016	0.55	2,000	

¹ Contained Tonnes and ounces may not add due to rounding.

14.13 Risk and Uncertainty in the Mineral Resource Estimate

Favorable geological and structural settings along with historical and recent drilling has delineated significant zones of near surface oxidized gold mineralization at the Appaloosa, Bowl and Stallion zones.

In the opinion of Mr. Dufresne, the largest sources of uncertainty in the estimation and classification of the mineral resource with reasonable prospects for eventual economic extraction at Pony Creek are:

- Level of confidence in the modelling and application of the 3D redox model
- Metallurgical information available for potential recoveries.
- Level of confidence in the assigned densities.
- Level of confidence in the sub-surface structural interpretation.
- Drillhole data density within some mineralization domains.

The current redox model is considered preliminary at present. Additional drilling and metallurgical work will likely improve the model, and in the opinion of the authors, there is potential to increase the amount of high and moderate recovery material.

Although Contact Gold has completed initial metallurgical testing of recent drill samples from the Bowl and Stallion zones, there was not enough data to use in the MRE for Pony Creek. The metallurgical studies discussed in Section 13 indicate potential for

^{2.} The Inferred Mineral Resource in this estimate has a lower level of confidence than that applied to the Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of the Inferred Mineral Resource could be upgraded to an Indicated Mineral Resource with continued exploration.

^{3.} The Mineral Resources in this MRE were estimated in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions (2014) and Best Practices Guidelines (2019) prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council.

high recovery and medium recovery material. The domain coverage of DDHs used in the metallurgical studies is limited.

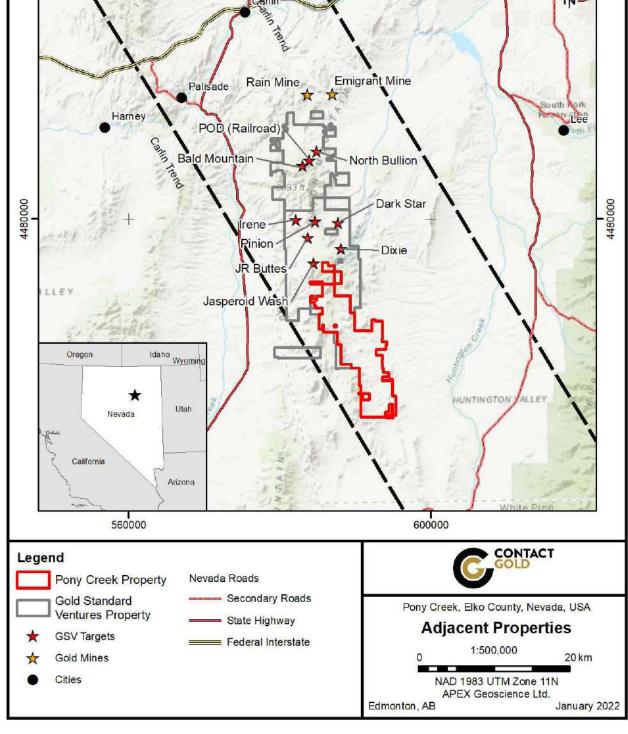
Density data was collected and evaluated for each of the main lithological units. The distribution of the density values within each lithology is well behaved. There is, however, limited coverage of density data collected across all estimation zones, Appaloosa, Bowl, North Stallion and South Stallion. Mr. Dufresne recommends that further density be collected to confirm the current density categories in each zone as well as collecting more density measurements both inside and outside of the mineralization domains to better evaluate any correlation between gold grade and density values.

The modelled mineralization trends show some observed interactions between faults in the Bowl domain and the mineralization, the structural features throughout the domains are well mapped on the surface; however, the sub-surface contacts of the structural features are less well supported. Due to the reliance on the structural features in the modelling of the mineralization trends this is a source of uncertainty in the mineral resource estimation.

The Bowl domain mineral resource shows the highest data density of the domains estimated, and Mr. Dufresne recommends some targeted drilling to increase the confidence in the Bowl domain mineral resource. Gold mineralization at the Bowl Zone remains open for expansion, particularly to the northwest. Gold mineralization at both the Appaloosa and Stallion zones is open for expansion in all directions. This poses upside potential in the form of uncertainty in the extents of the mineralization domains. Further drilling in the Appaloosa, North Stallion and South Stallion mineralization domains is expected to change the extents of the modelled mineralization domains.

Sections 15-22 are not required.

The Pony Creek Property is an early stage exploration project.


23 Adjacent Properties

This section discusses mineral properties that occur outside of the Pony Creek Property. The QP has been unable to verify information pertaining to mineralization on the competitor properties, and therefore, the information in the following section is not necessarily indicative of the mineralization on the Property that is the subject of this Technical Report. The information provided in this section is simply intended to describe examples of the type and tenor of mineralization that exists in the region and is being explored for at the Pony Creek Property.

Relevant mineral properties located adjacent to the Pony Creek Property include the Railroad-Pinion projects owned by GSV to the north of Pony Creek, and the Rain and Emigrant mines to the north of the Railroad and Pinion area (Figure 23.1).

560000 600000 Gold Quarry/Tusc/Mac Spring Emigrant Mine Rain Mine South Nor Harney POD (Railroad) Bald Mountain North Bullion Dark Star Pinion Dixie JR Buttes Jasperoid Wash Idaho Wyoming Oregon HUNTINGTON Utah California

Figure 23.1. Relevant properties adjacent to the Pony Creek Property.

Mr. Dufresne, the senior author of this Technical Report, has co-authored several past NI 43-101 technical reports for the Railroad-Pinion properties (Dufresne et al., 2014; 2015; 2017; Dufresne and Koehler, 2016; Dufresne and Nicholls, 2016; 2017; Ibrado et al., 2020). Mr. Dufresne participated in a recent Pre-Feasibility Study (PFS) for the South Railroad Property, which is the central portion of the Railroad-Pinion project and includes the Dark Star and Pinion deposits (Ibrado et al., 2020); however, he has not been directly involved in technical work for the Railroad-Pinion properties since 2017. The PFS has since been superseded by a recently completed Feasibility Study (FS) completed for GSV (GSV News Release February 23rd, 2022). Mr. Dufresne did not participate in the FS.

With the exception of Mr. Dufresne's QP site verification of the Railroad-Pinion Property, the authors have not visited or worked at any of the other projects summarized in this section. Where references are made to past production and/or historical or current mineral resources, the authors have not verified the information.

23.1 Railroad-Pinion Project

GSV's Railroad-Pinion project is situated along the southeastern portion of the Carlin Gold Trend. The Railroad-Pinion project includes the Dark Star, North Bullion, Pinion, POD (formerly known as Railroad) and Jasperoid Wash gold deposits, as well as four exploration target areas including Dixie, Bald Mountain, JR Buttes and Irene (Figure 23.1). A prefeasibility study and updated resource were released for the South Railroad project, which is the central portion of the Railroad-Pinion project and includes the Dark Star and Pinion deposits. The prefeasibility study reports Proven and Probable Mineral Reserves of 1.25 million ounces of gold and 2.71 million ounces of silver and estimate an 8-year mine life with average of 146,000 ounces per year over the first 5 years. The mineral reserve pits designs were based on a gold price of US\$1,250 per ounce and a silver price of US\$15.30 per ounce (Gold Standard Ventures Corp., 2022a).

23.1.1 Dark Star Deposit

The Dark Star deposit in the South Railroad project is a Carlin style, sedimentary rock-hosted deposit located approximately 5.5 km (3.4 miles) north of the Pony Creek Property. Mineralization at Dark Star consists of submicroscopic gold hosted primarily in a silica alteration zone within Pennsylvanian-Permian bioclastic limestone. An updated resource and prefeasibility study were completed on Dark Star and other Gold Standard Projects in 2020 (Ibrado et al., 2020). The Mineral reserve estimate was based on an open pit mine plan with a gold price of \$1,275 USD/oz. The estimate comprises a Probable Mineral Reserve of 23.88 million tonnes (26.32 million tons) averaging 0.83 g/t (0.024 opt) Au, representing a total of 640,000 contained ounces of gold and a Proven Mineral Reserve of 5.43 million tonnes (5.99 million tons) averaging 1.39 g/t (0.041 opt) Au, representing a total of 243,000 contained ounces of gold (Gold Standard Ventures Corp., 2022b).

The mineral resource estimate for Dark Star was constrained within a US\$1,500 per ounce of gold optimized pit shell using gold cut-off grades of 0.14 g/t (0.004 opt) Au for

heap leach material (oxide and transitional) and 1.0 g/t (0.029 opt) Au for sulphide material. The Dark Star mineral resource estimate comprises a Measured Mineral Resource of 5.86 million tonnes (6.46 million tons) averaging 1.31 g/t (0.038 opt) Au, representing a total of 246,000 contained ounces of gold, an Indicated Mineral Resource of 26.86 million tonnes (29.61 million tons) averaging 0.78 g/t (0.023 opt) Au, representing a total of 675,000 contained ounces of gold, and an additional Inferred Mineral Resource of 2.48 million tonnes (2.73 million tons) averaging 0.70 g/t (0.020 opt) Au, representing a further 56,000 contained ounces of gold. Mineral Resources are inclusive of Mineral Reserves (Gold Standard Ventures Corp., 2022b).

23.1.2 Pinion

The Pinion deposit is a Carlin-type sedimentary hosted gold deposit located within the Railroad-Pinion project approximately 6 km (3.7 mi) north of the Pony Creek Property. Precious metal mineralization at Pinion is generally submicroscopic, disseminated, and hosted principally in sedimentary rocks, with some mineralization in felsic dikes and sills. Unlike most Carlin-type systems, the Pinion deposit contains substantial silver which adds to the economics of the deposit. Mineralization at Pinion is strongly controlled by a 3 m (10 ft) to 120 m (394 ft) thick dissolution collapse breccia at the contact between the Devil's Gate limestone and the overlying Tripon Pass Formation silty micrite. Gold mineralization occurred at the same time as brecciation, quartz vein formation, and silica barite replacement and infill of open spaces.

The Pinion deposit was included in the updated resource and prefeasibility study in 2020. The mineral reserve estimate for Pinion is based on an open pit mine plan and production schedule, a gold price of US\$1,275 per ounce and a silver price of US\$16.50 per ounce. The Pinion mineral reserve estimate comprises a Probable Mineral Reserve of 16.81 million tonnes (18.53 million tons) averaging 0.63 g/t (0.018 opt) Au and 4.65 g/t (0.136 opt) Ag representing a total of 341,000 contained ounces of gold and 2.51 million tons) averaging 0.66 g/t (0.019 opt) Au and 5.2 g/t (0.152 opt) Ag, representing a total of 23,000 contained ounces of gold and 191,000 contained ounces of silver.

The mineral resource estimate for Pinion was constrained within a US\$1,500 per ounce of gold optimized pit shell using gold cut-off grades of 0.14 g/t Au for heap leach material (oxide and transitional). The Pinion mineral resource estimate comprises a Measured Mineral Resource of 1.30 million tonnes (1.43 million tons) averaging 0.64 g/t (0.019 opt) Au and 5.15 g/t (0.150 opt) Ag representing a total of 27,000 contained ounces of gold and 216,000 contained ounces of silver, an Indicated Mineral Resource of 27.62 million tonnes (30.44 million tons) averaging 0.58 g/t (0.017 opt) Au and 4.18 g/t (0.122 opt) Ag representing a total of 517,000 contained ounces of gold and 3.71 million contained ounces of silver, and an additional Inferred Mineral Resource of 10.81 million tonnes (11.91 million tons) averaging 0.64 g/t (0.019 opt) Au and 3.80 g/t (0.111 opt) Ag representing a further 224,000 contained ounces of gold and 1.32 million contained ounces of silver. Mineral Resources are inclusive of Mineral Reserves (Gold Standard Ventures Corp., 2022e).

23.1.3 North Bullion

The North Bullion deposit is a Carlin-type sedimentary-hosted gold deposit located approximately 15 km (9.3 miles) north of the Pony Creek Property. Gold-silver mineralization is associated with sooty sulphides, silica, carbona, clay, barite, realgar, and orpiment. Mineralization is disseminated and submicroscopic and is hosted in sedimentary rocks with some mineralization in felsic dykes and sills. Mineralization is controlled by faulting and is localized in low to moderate dipping sheared Webb and Tripon Pass Formations and the Devil's Gate limestone.

The North Bullion deposit was included in the updated resource in 2020. Sulphide Inferred Mineral Resource uses a cut-off grade of 1.25 g/t (0.036 opt) Au, which is constrained within an optimized pit shell, and is comprised of 2.05 million tonnes (2.26 million tons) at 2.60 g/t (0.076 opt) Au for 171,400 contained ounces of gold. The North Bullion deposit underground Inferred Mineral Resource, which is reported at a lower 2.25 g/t (0.066 opt) Au cut-off grade, comprises 5.55 million tonnes at 3.29 g/t (0.096 opt) Au for 587,700 contained ounces of gold (Gold Standard Ventures Corp., 2022d).

23.1.4 POD

The POD deposit is a Carlin-type sedimentary-hosted gold deposit located within the Railroad-Pinion project approximately 14 km (8.7 miles) north of the Pony Creek Property. Mineralization is hosted in the in a dissolution-collapse breccia within the sheared Tripon Pass Formation, the Webb Formation micrite and the Devil's Gate Limestone. Gold mineralization is submicroscopic, hosted in sedimentary rocks and felsic dykes, and is associated with sooty sulphides, silica, carbon, clay, barite, realgar, and orpiment. These deposits are similar to the Rain deposit found 7 km (4.3 miles) to the north.

The POD oxide Indicated and Inferred Mineral Resource uses a cut-off grade of 0.14 g/t (0.004 opt) Au, which is constrained within an optimized pit shell and includes an Indicated Mineral Resource of 2.92 million tonnes (3.22 million tons) at 0.96 g/t (0.028 opt) Au for 90,100 contained ounces of gold and an Inferred Mineral Resource of 3.36 million tonnes (3.70 million tons) at 0.43 g/t (0.013 opt) Au for 46,600 contained ounces of gold (Gold Standard Ventures Corp., 2022f).

23.1.5 Jasperoid Wash

The Jasperoid Wash deposit is in the southern portion of GSV's Railroad-Pinion project, immediately to the west of the northernmost block of the Pony Creek Property. The Jasperoid Wash deposit is a Carlin-type sedimentary-hosted gold deposit hosted in Penn-Perm conglomeratic rocks of a Tomera Formation equivalent, controlled by a series of altered Tertiary feldspar porphyry dykes. The deposit is approximately 1,400 m (4,600 ft) long by 1,100 m (328 ft) wide and is contained in an elongate north-south dipping structural corridor.

Jasperoid Wash was included in the updated resource in 2020 (Ibrado et al., 2020). The mineral resource estimate for Jasperoid Wash was constrained within a US\$1,500 per ounce of gold optimized pit shell using gold cut-off grades of 0.14 g/t (0.004 opt) Au for heap leach material (oxide and transitional). The Jasperoid Wash mineral resource estimate comprises an Inferred Mineral Resource of 10.57 million tonnes (11.65 million tons) averaging 0.33 g/t (0.010 opt) Au, representing a total of 111,000 contained ounces of gold (Gold Standard Ventures Corp., 2022c).

23.2 Rain Mine

Rain is a Carlin-style, sedimentary rock-hosted gold deposit that is located approximately 22 km (13.7 mi) north of the Pony Creek Property. Newmont operated the Rain open pit mine, the Rain Underground mine and the SMZ open pit mine from 1988 to 2000 and produced approximately 1.24 million ounces (Ressel et al., 2015. Longo et al. (2002). The mineral resources for the three deposits are summarized from Ressel et al., (2015) and Longo et al. (2002) as follows: Rain open pit 15.5 million tons (14.1 million tonnes) at 0.066 opt (2.3 g/t) Au for a total of 1,017,300 ounces of gold; Rain Underground 1.154 million tons (1.04 million tonnes) at 0.23 opt (7.9 g/t) Au for a total of 265,000 ounces of gold and the SMZ open pit 1.5 million tons (1.4 million tonnes) at 0.019 opt (0.65 g/t) Au for a total of 30,000 ounces of gold. The resources pre-date NI 43-101 and little or no detailed information such as potential resource category or number of drillholes is presented for the estimates or how the resources were arrived at, therefore the estimates are considered historical in nature and should not be relied upon. None the less, the information provides an indication of the potential size of the gold mineralized system and deposits held by Newmont immediately north of GSV's Railroad-Pinion project.

Along strike to the northwest of the Rain project and likely on the same structure are the Saddle and Tess gold deposits. The mineralized zones are roughly 3.5 km (2 miles) north of the Railroad-Pinion Project and 10 km (6 miles) northwest of the North Bullion Target. Longo *et al.* (2002) states that Newmont identified a primarily underground high sulphide resource of 1.37 million tons (1.23 million tonnes) at 0.572 opt (19.6 g/t) Au for a total of 782,000 ounces of gold at Saddle and 3.99 million tons (3.59 million tonnes) at 0.37 opt (12.7 g/t) Au for a total of 1,475,000 ounces of gold at Tess. The project was part of a joint venture between Premier Gold Mines and Newmont and has recently been consolidated under Newmont ownership. No mining has been conducted at the two deposits. The resources pre-date NI 43-101 and little or no detailed information such as potential resource category or number of drillholes etc. is presented for the estimates or how the resources were arrived at, therefore the estimates are considered historic in nature and should not be relied upon.

The Rain trend of mineralization is characterized by disseminated gold mineralization hosted in dominantly oxidized, silicified, dolomitized and barite rich collapse breccia with are sulfides, developed along the Webb Formation mudstone and Devil's Gate Limestone Formation contact and along the Rain Fault. Important ore-controlling features at Rain include the west-northwest striking Rain fault, the Webb/Devil's Gate contact, collapse

breccia and northeast striking faults. Along the Carlin Trend, and at the Rain, Saddle and Tess deposits, shallow oxide zones give way to deeper sulphide and carbon rich zones of substantial size and grade.

23.3 Emigrant Mine

The Emigrant Mine is a Carlin-style, sedimentary rock-hosted gold deposit that is located approximately 22 km (13.7 mi) north of Pony Creek. The Emigrant Mine was integrated into the Carlin integrated mining project under Nevada Gold Mines LLC with ownership by Newmont Corporation (38.5% ownership) and Barrick Gold Corporation (61.5% ownership). The Carlin Project consists of three open pit mines (Emigrant, Gold Quarry and Silverstar) and four underground mines (Leeville, Chukar, Pete Bajo, and Exodus). The total combined reported production from the Carlin Project is 944,000 ounces of gold in 2016, and on December 31, 2016, reported 15.0 million ounces of gold reserves (Newmont, 2022).

Newmont mined the deposit through open pit methods until it ceased production in 2018 due to the price of gold and increased production costs (Saminather, 2019). The ore was processed onsite with a run-of-mine heap leach operation with some crushing. Heap leach processing continues onsite. Disseminated gold mineralization is hosted in oxidized, silicified, dolomitized and barite rich collapse breccia developed within the Webb Formation mudstone. Important ore-controlling features at Emigrant include the north-south-striking Emigrant Fault, collapse breccia and the Northeast Fault.

Open pit, oxide resource and reserve calculations for Newmont's Carlin Trend operations are typically commingled into a single heading of "Carlin open pits, Nevada" category. In 2003, reserves at Emigrant were published at 1,220,000 ounces (Ressel et al., 2015). No details were provided by Newmont as to the quality of the reserves. The mine was expected to produce roughly 80,000 ounces of gold over a ten plus year mine life as of 2014 (Harding, 2012).

24 Other Relevant Data and Information

The authors are not aware of any other relevant information with respect to the Property as of the effective date of this Technical Report.

25 Interpretation and Conclusions

The Pony Creek Property is situated in the Piñon Range within the south-central Carlin trend, a northwest- southeast alignment of sedimentary rock-hosted gold deposits in the Basin and Range geological province of western North America. The Carlin Trend has produced more than 83 million ounces of gold and contains significant remaining resources and reserves as of December 2014 (Rhys et al., 2015). Furthermore, the Property is situated immediately to the south of GSV's Railroad-Pinion project, which

includes the Dark Star, Pinion, North Bullion, POD and Jasperoid Wash Carlin-type sedimentary hosted gold deposits.

Exploration conducted on the Property has led to the delineation of three main zones of gold mineralization, including the Bowl, Appaloosa and Stallion zones. Additional anomalous zones and target areas delineated at the Pony Creek Property include Pony Spur, Palomino, Mustang, Elliott Dome and East Bailey. The gold mineralization discovered to date at the Pony Creek Property is principally hosted within the Tertiary (or Jurassic) rhyolite, or within altered and silicified calcareous clastic rocks of the Penn-Perm Moleen Formation.

The Bowl Zone consists of repeating packages of sandstone, conglomerate and limestone with a rhyolite plug in the centre which spreads out laterally capping the repeating units. These units are offset by a series of steeply dipping faults that generally trend north to northwest. The main style of mineralization at the Bowl Zone is sub horizontal and follows the contact between the rhyolite cap and the underlying units. The second mineralization style at the Bowl Zone is a steeply east dipping pod of mineralization on the east edge of the Bowl Zone found within and near the rhyolite unit. This mineralization has a small north-south extension and is truncated by a fault further to the east which cuts off the mineralization.

The gold mineralization at the Appaloosa Zone is concentrated at the contact between a sub-horizontal sandstone unit and a rhyolite body near an overturned fold hinge.

The Stallion Zone is broken up into north and south mineralized zones. The mineralization at Stallion is interpreted as sub-horizontal and stratigraphic based. The rocks hosting gold mineralization at Stallion show strong silicification and oxidation of Penn-Perm calcareous sandstone in drilling and in sparse, recessive outcrops at surface.

25.1 Historical Exploration

Several historical exploration and drilling programs have been conducted at the Property from 1980 to 2014 by Newmont Corp. (1980-1985, 1987-1989, 1997-1998), NERCO (1987), US Borax Exploration (1988-1989), Westmont Mining Inc. - Newmont Joint Venture (1990-1992), Ramrod Gold Inc. (1993), Uranerz U.S.A. Inc. (1994-1995), Quest International Management Services Inc. (1996-1997), Barrick Gold Exploration Inc. - Quest Joint Venture (1997-1998), Homestake Mining Company (1999-2000), Nevada Contact Inc. (2001-2003), Mill City International Corp. (2003), Grandview Gold Inc. (2004-2007), Consolidated Global Minerals (2006), AmMex Gold Mining Corp. (2007), Gold Run Inc. (2007) and Gold Standard Ventures Corp. (GSV) (2008-2014). Historical exploration has consisted of geological mapping, geochemical soil and rock sampling, geophysical surveying and drilling.

A total of 261 DDH and RC drillholes, totalling 50,645 m (166,158.1 ft) have been completed at Pony Creek from 1981 to 2007. Most of the historical drilling was completed in the northern portion of the Property, in proximity to the Bowl, Appaloosa and Stallion

zones. Historical drilling delineated a large zone of gold mineralization in the northern portion of the Property measuring approximately 3.9 km (2.4 miles) long by 610 m (2,000 ft) wide on the southern end to 1,463 m (4,800 ft) wide on the north end of the area of interest.

In addition, historical drilling completed in the southern portion of the Pony Creek Property in the East Bailey target area returned anomalous to weakly mineralized gold values in drilling, many of which are located at or adjacent to the Webb Formation - Devil's Gate Formation contact, and in some dike breccia.

25.2 Recent Exploration by Contact Gold

As of the effective date of this Technical Report, surface exploration conducted on the Property by Contact Gold has included geological mapping, the collection of 7,118 surface soil samples, 441 rock chip and channel samples, 427 ground gravity stations with processing and interpretation, and an approximately 66 line-km (41 line-mi) CSAMT geophysics program.

The geochemical soil sampling program delineated several anomalous areas, including Elliott Dome, Mustang, Pony Spur, Appaloosa, Stallion, Palomino and Bowl. A few minor isolated gold anomalies are present. The gold results in soils range from less than detection (<1 ppb Au) to maximum values of 1.21 ppm Au and 1.19 ppm Au at the Bowl Zone and Pony Spur, respectively. Strong correlations between Au and As, Tl, Sb, Cs and Te were observed in many areas.

Geochemical rock sampling was completed over areas with anomalous Au-in-soil results. Most of the rock samples were collected in the northwestern portion of the Property. Significant results from the rock grab samples include 2.71 g/t (0.079 opt) Au, 0.58 g/t (0.017 opt) Au and 0.54 g/t (0.016 opt) Au from the Appaloosa Zone.

CSAMT geophysical surveys completed over the Pony Creek Property delineated structures, lithologies and alteration to assist in future drill targeting. The 2017 CSAMT survey produced 11 inverted resistivity sections and 8 target areas that aligned with known geological controls at the time and two potential mineralization trends. A CSAMT survey completed in 2018 produced 7 inverted sections that highlighted the extension of the Dark Star structural corridor and one potential area of alteration.

In addition to the surface exploration, Contact Gold has drilled 113 RC and 5 DDH, totalling 25,921 m (85,042.7 ft), at Pony Creek. Drilling conducted by Contact Gold at the Property from 2017 to 2019 focused on the Bowl Zone, with additional drilling completed at the Appaloosa and Stallion zones, and the Mustang and Pony Spur target areas. The objectives of Contact Gold's drill programs were to confirm the extents of known mineralization, validate historical drilling intercepts, expand areas of interest, understand the controls on mineralization and test new geophysical and geochemical targets within the Property. Contact Gold's drill programs identified five zones of oxide and transitional gold mineralization at shallow depths primarily hosted within altered and silicified

calcareous clastic rocks of the Penn-Perm Moleen Formation and at the Bowl Zone within or adjacent to a Tertiary (or Jurassic) rhyolite.

Select significant results from Contact Gold's recent (2017-2019) drill programs at the Bowl Zone include:

- 1.36 g/t (0.040 opt) Au over 43.74 m (143.5 ft) length from 116.89 m (383.5 ft) depth in drillhole PC17-24, including 3.35 g/t (0.098 opt) Au over 15.55 m (51 ft) length from 125.03 m (410.2 ft);
- 2.12 g/t (0.062 opt) Au over 22.86 m (75 ft) length from 64.01 m (210 ft) depth in drillhole PC17-040, including 4.53 g/t (0.132 opt) Au over 9.14 m (30 ft) length from 65.53 m (215 ft);
- 2.51 g/t (0.073 opt) Au over 47.24 m (155 ft) length from 86.87 m (285 ft) depth in drillhole PC18-03;
- 1.00 g/t (0.029 opt) Au over 92.97 m (305 ft) length from 50.29 m (165 ft) depth in drillhole PC18-04; and
- 2.42 g/t (0.071 opt) Au over 35.05 m (115 ft) length from 266.7 m (875 ft) depth in drillhole PC18-33, including 3.15 g/t (0.092 opt) Au over 24.38 m (80 ft) length from 274.23 m (899.7 ft) (Contact Gold Corp., 2020a).

Select significant results from Contact Gold's recent (2018-2019) drill programs at the Stallion Zone include:

- 0.42 g/t (0.012 opt) Au over 33.53 m (110 ft) length from 4.57 m (15 ft) depth in discovery hole PC18-018, including 1.11 g/t (0.032 opt) Au over 4.5 m (14.8 ft);
- 0.71 g/t (0.021 opt) Au over 10.67 m (35 ft) length from 19.81 m (65 ft) depth in hole PC18-022; and
- 0.33 g/t (0.010 opt) Au over 92.97 m (305 ft) length from surface in hole PC18-51, including 0.6 g/t (0.017 opt) Au over 13.7 m (44.9 ft) (Contact Gold Corp., 2020a).

Select significant results from Contact Gold's recent (2017-2019) drill programs at the Appaloosa Zone include:

0.84 g/t (0.024 opt) over 7.62 m (25 ft) length from 85.35 m (280.0 ft) depth in hole PC19-17, including 1.56 g/t (0.045 opt) Au over 3.05 m (10 ft) from 88.39 m (290 ft);

- 0.38 g/t (0.011 opt) Au over 28.96 m (95 ft) length from 83.82 m (275 ft) depth in hole PC19-16, including 2.19 g/t (0.064 opt) Au over 3.05 m (10 ft) from 89.92 m (295 ft); and
- 0.34 g/t (0.010 opt) Au over 44.20 m (145 ft) length from 25.91 m (85 ft) depth in hole PC17-21 (Contact Gold Corp., 2019b).

The true width of mineralized intercepts at Pony Creek is not known but is estimated to generally be at least 70% of drilled thickness in areas of flat lying mineralization. True width is highly variable in areas of high angle gold mineralization.

25.3 Metallurgical Testing by Contact Gold

In 2018 and 2020, Contact Gold conducted metallurgical testing on select samples from the 2017-2019 drill programs completed at the Bowl Zone and Stallion Zone.

In 2018, composite samples of pulp material from 2017-2018 drill samples were analysed using cyanidation bottle roll tests for gold. Gold recoveries on two oxide composites by Contact Gold were 85% for the rhyolite gold mineralization and 90% for the conglomerate composite of the weighted average of fire assays for the same composites, indicating that the oxidized portion of gold mineralization at Pony Creek's Bowl Zone is amenable to standard cyanidation processing. In addition, preg robbing analysis was completed on one sulphide interval from Contact Gold drillhole PC18-04. The initial results of the preg robbing analysis indicate that the sulphide material may not need to be segregated from the oxide material as waste and some gold may be recovered during potential future heap leach processing. The preg robbing values varied for 34 individual 1.524 m (5 ft) intervals from -3% to 69%.

In 2020, cyanidation bottle roll tests for gold were completed on four composite samples from the Bowl and Stallion zones. The cyanide bottle roll test recoveries range from 92 to 106% in the oxide zone at Bowl and Stallion and 15% in the non-oxide zone at the Bowl Zone.

25.4 Current Mineral Resource

This Technical Report details a NI 43-101 maiden mineral resource estimate (MRE) for Pony Creek's Bowl, Appaloosa and Stallion zones. The 2022 MRE for Pony Creek was completed by Mr. Tyler Acorn, M.Sc., Mr. Warren Black, M.Sc., P.Geo., of APEX Geoscience Ltd. under the direct supervision of Mr. Dufresne, M.Sc., P.Geol., P.Geo. and a QP who takes responsibility for the MRE contained herein. Mr. Steven Nicholls, BA.Sc., MAIG, a QP and APEX's senior resource geologist performed an internal audit of the MRE in Section 14.

The Pony Creek drillhole database contains a total of 373 drillholes with 45,600 sample intervals in a sample database with 45,592 samples assayed for gold. The Pony Creek Project MRE covers the 3 main mineralization zones, the Bowl, Appaloosa and

Stallion zones. Of the 373 drillholes, 211 intersected the estimation domains and were used in the MRE. The portion of the drillhole database used in the MRE consists of a total of 27,702 unique sample/interval entries (totalling 42,423 m) of which 5,361 sample/interval entries (totalling 8,111 m) are within the estimation domains and were used in the Mineral Resource Estimation. The current MRE utilized 211 drillholes with 111 historical holes completed by previous operators and 100 drillholes completed by Contact Gold. Statistical treatments were conducted on the raw and composite samples resulting in capping limits of 6.9 g/t, 0.7 g/t and 1.9 g/t Au for the Bowl, Stallion and Appaloosa zones, respectively.

The MRE is based on the combination of geological modeling, geostatistics and conventional block modeling using Ordinary Kriging (OK) for gold grade interpolation. Modeling was conducted in the Universal Transverse Mercator (UTM) coordinate space relative to the North American Datum (NAD) 1983, Zone 11N (EPSG:26911). The mineralization domains utilized an approximate lower cut-off of 0.10 g/t Au for interpretation of mineralization shapes. The resource block model utilized a block size of 3 m (X) x 3 m (Y) x 3 m (Z) to honor the mineralization wireframes. The percentage of the volume of each block below the bare earth surface and within each mineralization domain was calculated using the three dimensional (3D) geological models and a 3D surface model. The MRE is undiluted and only utilizes the volume of each block within each mineralization domain.

The gold estimation was completed using OK and utilized 2,874 composited samples inside the interpreted mineralization wireframes. The search ellipsoid size used to estimate the gold grades was defined by the modelled variograms. Block grade estimation employed locally varying anisotropy (LVA), which uses different rotation angles to define the principal directions of the variogram model and search ellipsoid on a per-block basis. Blocks within the estimation domains are assigned rotation angles using a modelled 3D mineralization trend surface wireframe, which allows structural complexities to be reproduced in the estimated block model.

A total of 71 bulk density sample results were available and reviewed. Density was assigned on a block-by-block basis based on the majority lithological unit present based upon the bulk density sample results. At this point no distinction was made between mineralized or non-mineralized rock.

The Pony Creek MRE is classified according to the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 29, 2019, and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated May 10, 2014.

The maiden MRE for the Pony Creek Property is presented in Table 25.1.

Table 25.1. Pony Creek Mineral Resource Estimate

Zone	Cut-off Grade	Short Tons* (2,000 lbs)	Tonnes* (1000 kg)	Avg Grade (ozt/st)	Avg Grade (g/t)	Contained Ounces*	Class***
Bowl Zone	Mixed**	18,457,000	16,744,000	0.018	0.63	340,000	Inferred
Appaloosa	Mixed**	2,059,000	1,868,000	0.015	0.50	30,000	Inferred
Stallion	Mixed**	7,834,000	7,107,000	0.008	0.27	63,000	Inferred
TOTAL	Mixed**	28,350,000	25,719,000	0.015	0.52	433,000	Inferred

^{*}Tons, tonnes and ounces rounded to the neared 1,000, and may not add due to rounding.

25.5 Risks and Uncertainties

Potential uncertainties in the estimation of the Pony Creek MRE include: i) the state of the current redox model for all the mineralized domains, ii) limited metallurgical information available for potential recoveries; iii) the level of confidence in the assigned densities, iv) the level of confidence in the sub-surface structural interpretation; and v) the drillhole data density within the mineralization domains outside of the Bowl Zone.

Additional drilling and metallurgical work, including core drilling, will likely improve the redox, metallurgical, geological and structural model, and in the opinion of the authors, there is potential to increase the amount of high and moderate recovery material.

Although Contact Gold has completed initial metallurgical testing of recent drill samples from the Bowl and Stallion Zone, there was not enough data to use in the maiden MRE for the Pony Creek Property. However, the limited metallurgical testwork completed by the Company, discussed above in Section 13, indicates potential for the presence of significant volumes of high recovery and medium recovery material. The domain coverage of DDHs used in the metallurgical studies is limited.

Additionally, although density data was collected and evaluated for each of the main lithological units, there is limited coverage across all the estimated domains, including Appaloosa, Bowl, North Stallion and South Stallion. However, the current density dataset indicates that the distribution of the density values within each lithology is well behaved. The authors recommend that further density data be collected to confirm the current density categories in each zone as well as collecting more density measurements both inside and outside of the mineralization domains to better evaluate any correlation between gold grade, alteration and density values.

^{**}Mixed lower cutoff grades are utilized depending upon recoveries for oxide, transitional and non-oxide material, using 0.15 g/t Au lower cutoff for oxide material and 0.22 g/t Au for transitional and non-oxidized material.

^{***}Inferred Mineral Resources are not Mineral Reserves. Mineral resources which are not mineral reserves do not have demonstrated economic viability. There has been insufficient exploration to define the inferred resources tabulated above as an indicated or measured mineral resource, however, it is reasonably expected that the majority of the Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration. There is no guarantee that any part of the mineral resources discussed herein will be converted into a mineral reserve in the future. The estimate of mineral resources may be materially affected by environmental, permitting, legal, marketing or other relevant issues. The mineral resources have been classified according to the Canadian Institute of Mining (CIM) Definition Standards for Mineral Resources and Mineral Reserves (May, 2014).and CIM Estimation of Mineral Resources & Mineral Reserves Best Practices Guidelines (2019).

^{****}The recommended reported resources have been constrained within a \$US1,600/ounce gold optimized pit shell.

Furthermore, with any early stage exploration project there exists potential risks and uncertainties. Contact Gold will attempt to reduce risk/uncertainty through effective project management, engaging technical experts and developing contingency plans. Potential risks include changes in the price of gold, availability of investment capital, changes in government regulations, community engagement and socio-economic community relations, permitting and legal challenge risks and general environment concerns.

There is no guarantee that further exploration at the Pony Creek Property will result in the discovery of additional mineralization or an economic deposit. Nevertheless, in the opinion of the authors, there are no significant risks or uncertainties, other than those mentioned above, that could reasonably be expected to affect the reliability or confidence in the currently available exploration information with respect to the Pony Creek Property.

26 Recommendations

Based upon a review of available information, historical and recent exploration data, the senior author's recent site visit and the maiden MRE for the Bowl, Appaloosa and Stallion zones of Pony Creek, the authors outline Pony Creek as a property of merit prospective for the discovery of potentially economic Carlin-type gold deposits. This contention is supported by:

- The favourable geological and structural setting of the Pony Creek Property and its position at the southern end of the Carlin Gold Trend immediately to the south of GSV's Railroad-Pinion project, which contains the Dark Star, Pinion, North Bullion, POD and Jasperoid Wash Carlin-type sedimentary hosted gold deposits. Key regional host rocks include Penn-Perm clastic and carbonate rocks of the Strathearn and Moleen formations, the Mississippian Chainman and Webb Formation, as well as the Devonian Devil's Gate Limestone.
- Historical drilling conducted by previous operators delineated a large zone of gold mineralization in the northern portion of the Property measuring approximately 3.9 km (2.4 miles) long by 610 m (2,000 ft) wide on the southern end to 1,463 m (4,800 ft) wide on the north end of the area of interest.
- The recent results of surface exploration and drill programs conducted by the Issuer has led to the identification of near surface oxidized gold mineralization at the Bowl, Appaloosa and Stallion zones and the calculation of the maiden MRE for the Property. Gold mineralization at the Bowl Zone remains open for expansion, particularly to the northwest. Gold mineralization at both the Appaloosa and Stallion zones is open for expansion in all directions. The low drill density at the Appaloosa and Stallion zones provides excellent opportunity for potential expansion of the known oxide gold mineralization with in-fill and step-out drill programs. Several Au-in-soil anomalies at the Appaloosa Zone have yet to be drill tested.

- In addition, Contact Gold's recent work has highlighted new target areas, including Pony Spur, Palomino, Mustang and Elliott Dome.
 - O Pony Spur is situated along a northwest striking structural zone that projects into the Bowl Zone and into the major southeast flexure in the otherwise north-striking Emigrant/Dark Star/Pony Creek structural zone. All of Contact Gold's recent drilling at Pony Spur intersected low grade gold mineralization at the contact of the Devil's Gate/Webb Formation.
 - Palomino lies immediately to the northwest of the Bowl Zone and has been delineated by an Au-in-soil anomaly measuring 400 x 500 m (1,312 x 1,640 ft).
 - Mustang extends west-northwest from Appaloosa and north from the Stallion Zone. The Mustang Zone is defined by west-northwest trending structurally controlled gravity and Au-in-soil anomalies extending over a length of 2 km (1.2 miles). Mustang has yet to be drill tested.
 - Elliott Dome lies adjacent to GSV's Jasperoid Wash deposit (off-Property). It measures 500 x 1,000 m (1,640 x 3,280 ft) and is defined by north-south structurally controlled CSAMT and Au-in-soil anomalies in clastic and carbonate rocks. Elliott Dome has yet to be drill tested.
- In the southern Property area at the East Bailey target, historical CSAMT geophysical data and RC drilling data define a favourable structural setting where north-south structural features are intersected by northwesterly striking features and the prospective Devil's Gate/Webb Formation contact is at surface due to the structural movement of several apparent horst blocks.
- The recent metallurgical studies conducted on behalf of the Issuer indicate potential for high recovery and medium recovery material.
- The rock grab samples collected from the Stallion Zone by Mr. Dufresne during his 2022 Property visit contained low grade gold mineralization with 0.269 ppm (0.008 opt) Au in 22MDP003 and 0.167 ppm (0.005 opt) Au in 22MDP002, as well as elevated levels of pathfinder elements including Ag, As, Ba, Mo, Sb and Zn. The rock grab sample mineralization is consistent with the style and tenor of mineralization previously described on the Property at the Stallion Zone.

The authors recommend an aggressive exploration program for the Pony Creek Property involving surface exploration, additional exploration drilling, resource expansion and infill drilling, as well as more advanced metallurgical test work (Table 26.1). A staged exploration approach is recommended by the authors, with Phase 2 exploration being dependent on the results of Phase 1.

With respect to surface exploration, Phase 1 should include continued fieldwork comprising geological mapping and geochemical sampling to refine the geological and structural model of the Property, assist in drill target delineation, and to expand and fill in gaps in the existing Pony Creek database. All new drill roads built to define and expand near, and at-surface, gold mineralization should be mapped in detail and all structural measurements exposed should be collected. Composite channel samples as well as spot samples on suspecting controlling structures should be collected. In addition, CSAMT geophysical surveying is recommended at East Bailey to extend and supplement the existing geophysical dataset and assist in drill target delineation.

Regarding drilling in Phase 1, additional step-out drilling is warranted at the Bowl Zone and additional in-fill and step-out drilling is warranted at the Appaloosa and Stallion zones. The authors recommend a significant program intended to a) drill test targets along strike and down dip for additional zones of mineralization and extensions to existing zones at Appaloosa, Bowl and Stallion; b) infill the current resource areas at Appaloosa and Stallion; and c) test new or previously undrilled targets with exploration drilling at the Mustang and Elliott Dome target areas. Furthermore, additional drilling for metallurgical sampling and testing is recommended to provide the data necessary for a thorough metallurgical characterization of each mineralized zone. Oriented core drilling using the Ace Core Tool, or similar method, should be employed on a reasonable spacing through the known resource areas and in exploration targets where more structural data is needed. Core holes that would provide potentially useful slope stability information should be logged using the Golder method.

The estimated cost of the Phase 1 program is US\$4,492,000, not including contingency funds or GST.

Table 26.1. Summary of estimated costs for the recommended work programs at the Pony Creek Property. Currency is in US dollars.

Item	Phase 1	Phase 2
Geology: Soil and Rock Sampling	\$200,000	\$200,000
Geophysics	\$150,000	-
RC Drilling Program - Contractors	\$1,400,000	\$2,500,000
Core & Met Core Drilling Program - Contractors	\$1,400,000	\$2,500,000
Drilling Programs - Assaying	\$550,000	\$1,000,000
Drilling Programs - Personnel	\$200,000	\$400,000
Project Supervision	\$100,000	\$100,000
Land Holding	\$212,000	\$217,000
Permitting and Environmental	\$30,000	\$45,000
Geotechnical data collection	\$50,000	\$100,000
Metallurgy	\$200,000	\$300,000
Total	\$4,492,000	\$7,362,000

Phase 2 exploration is dependent on the results of Phase 1 and includes additional soil and rock sampling, RC and diamond drilling, and more advanced metallurgical test work.

Collectively, the estimated cost of the recommended work programs for the Pony Creek Property is itemized below and totals US\$11,854,000, not including contingency funds or GST (Table 26.1).

APEX Geoscience Ltd.

Michael B. Dufresne, M.Sc., P.Geol., P.Geo.

Fallon T. Clarke, B.Sc., P.Geo.

Edmonton, Alberta, Canada February 24th, 2022

	ERMIT TO PRACTICE PEX GEOSCIENCE LTD.
RM SIGNA	
RM APEGA	February 24,2022
PER The As	MIT NUMBER: P005824 sociation of Professional Engineers and Geoscientists of Alberta (APEGA)

27 References

- Abbott, E.W. (2003): Technical Report on the Pony Creek Property, Larrabee District, Elko County, Nevada, USA: NI 43-101 report prepared for Mill City International Corp., 83 p.
- Abbott, E.W., and Keith, S.B. (1999): Preliminary geologic and structural analysis of the Railroad project, Pinyon Range, Elko County, Nevada: Kinross Gold Company internal report, 52 p.
- Arehart, G.B. (1996): Characteristics and origins of sediments-hosted disseminated gold deposits: a review: Ore Geology Reviews, v. 11, p. 383-403.
- Bettles, K. (2002): Exploration and Geology, 1962-2002, at the Goldstrike Property, *in* Thompson, T.B., Teal, L., and Meeuwig, R., eds., Gold Deposits of the Carlin Trend: Nevada Bureau of Mines and Geology Bulletin 111, p. 54-75.
- Cline, J.S., Hofstra, A.H., Muntean, J.L., Tosdal, R.M., and Hickey, K.A. (2005): Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models, Economic Geology, v. 100, p. 451-484.
- Contact Gold Corp. (2018a): Contact Gold announces positive initial results from metallurgical testing at Pony Creek Gold Property, Nevada; Company News Release dated May 17, 2018, available on January 21, 2022 at < https://www.contactgold.com/news/ >
- Contact Gold Corp. (2018b): Contact Gold grows West Target gold discovery to over 1 km strike length and announces new Pony Spur discovery at Pony Creek; Company News Release dated September 5, 2018, available on January 21, 2022 at < https://www.contactgold.com/news/ >
- Contact Gold Corp. (2019a): Contact Gold continues to extend gold mineralization at the Appaloosa Zone at Pony Creek; Company News Release dated September 18, 2019, available on January 20, 2022 at < https://www.contactgold.com/news/ >
- Contact Gold Corp. (2019b): Contact Gold continues to advance the Pony Creek Property, Nevada; Company News Release dated October 9, 2019, available on January 20, 2022 at https://www.contactgold.com/news/ >
- Contact Gold Corp. (2019c): Contact Gold extends oxide gold mineralization 50 m north at the Stallion Zone at Pony Creek; Company News Release dated October 22, 2019, available on January 20, 2022 at < https://www.contactgold.com/news/ >
- Contact Gold Corp. (2020a): Contact Gold receives Plan of Operations permit for the Pony Creek Gold Project; Company News Release dated June 18, 2020, available on January 7, 2022 at https://www.contactgold.com/news/ >
- Contact Gold Corp. (2020b): Contact Gold reports excellent gold recoveries from bottle roll tests at Pony Creek; Company News Release dated June 24, 2020, available on January 7, 2022 at < https://www.contactgold.com/news/ >
- Dean, D.A., Benedetto, K.M.F. and Durgin, D.C., eds. (1990): Southern extension of the Carlin Trend: Influence of structure and stratigraphy on gold deposition: Field Trip #4 Guidebook,

- Great Basin Symposium Geology and Ore Deposits of the Great Basin, Geological Society of Nevada, Reno, 193 p.
- Dott, R.H. (1955): Pennsylvanian stratigraphy of the Elko and northern Diamond Ranges, northeast Nevada: American Association of Petroleum Geologists Bulletin, v. 39, p. 2211–2305
- Dufresne, M.B. and Koehler, S.R. (2016): Technical report on the Railroad and Pinion project, Elko County, Nevada, USA, NI 43-101 prepared for Gold Standard Ventures Corp. dated March 30, 2016, 217p.
- Dufresne, M.B., Koehler, S.R. and Jackson, M.R. (2017): Technical report on the Railroad-Pinion project, Elko County, Nevada, USA, NI 43-101 report prepared for Gold Standard Ventures Corp., dated March 30, 2017, 259 p.
- Dufresne, M.B., Nicholls, S.J. and Turner, A. (2014): Technical report maiden resource estimate Pinion Project, Elko County, Nevada, USA, NI 43-101 report prepared for Gold Standard Ventures Corp., dated October 24, 2014, 141p.
- Dufresne, M.B., Nicholls, S.J. and Turner, A. (2015): Technical report maiden resource estimate Dark Star Deposit, Elko County, Nevada, USA, NI 43-101 report prepared for Gold Standard Ventures Corp. dated April 17, 2015, 179p.
- Dufresne, M.B. and Nicholls, S.J. (2016): Technical report resource estimate update Pinion project Elko County, Nevada, USA, NI 43-101 report prepared for Gold Standard Ventures Inc., 220 p.
- Dufresne, M.B. and Nicholls, S.J. (2017): Technical report and mineral resource update Dark Star project, Elko County, Nevada, USA, NI 43-101 report prepared by APEX Geoscience Ltd. for Gold Standard Ventures Corp., 253 p.
- Dufresne, M.B. and Schoeman, P. (2014): Technical Report on the East Bailey project Elko County, Nevada, USA, NI 43-101 report prepared for Gold Standard Ventures Inc. and Tangueray Exploration Ltd., 128 p.
- EM Strategies (2019): Plan of Operations NVN Nevada reclamation permit application; prepared by EM Strategies for Clover Nevada II, LLC. dated May 2019, 67 p.
- Gold Standard Ventures Corp. (2022a): South Railroad Project; Company Website, available on February 6, 2022, at < https://goldstandardv.com/projects/south-railroad-project/south-railroad-project/south-railroad-project/
- Gold Standard Ventures Corp. (2022b): Dark Star; Company Website, available on February 6, 2022, at https://goldstandardv.com/projects/south-railroad-project/dark-star/.
- Gold Standard Ventures Corp. (2022c): Jasperoid Wash; Company Website, available on February 6, 2022, at < https://goldstandardv.com/projects/exploration-targets/jasperoid-wash/>.
- Gold Standard Ventures Corp. (2022d): North Bullion; Company Website, available on February 6, 2022, at https://goldstandardv.com/projects/exploration-targets/north-bullion/>.

- Gold Standard Ventures Corp. (2022e): Pinion; Company Website, available on February 6, 2022, at https://goldstandardv.com/projects/south-railroad-project/pinion/>.
- Gold Standard Ventures Corp. (2022f): POD/Sweet Hollow; Company Website, available on February 6, 2022, at https://goldstandardv.com/projects/exploration-targets/pod-sweet-hollow/.
- Gustin, M.M. (2017): Technical Report on the Pony Creek gold project, Elko County, Nevada, USA. NI 43-101 report prepared for Winwell Ventures Inc. dated April 18, 2017, 106 p.
- Harding, A. (2012): Mining to Start Soon at Emigrant, in Mining Quarterly Spring 2012; Elko Daily Free Press, p. 30-34.
- Hibdon, Z. (2018): Pony Creek project, Nevada, USA, 2017 Assay quality control report. Internal Contact Gold Inc. report dated April 2018, 22 p.
- Hibdon, Z. (2019a): Advanced Exploration on New Discoveries at Pony Creek: Contact Gold, Technical Presentation, May 8, 2019.
- Hibdon, Z. (2019b): Pony Creek project, Nevada, USA, 2018 Assay quality control report. Internal Contact Gold Inc. report dated August 2019, 23 p.
- Hibdon, Z. (2019c): Pony Creek project, Nevada, USA, 2019 Assay quality control report. Internal Contact Gold Inc. report dated August 2019, 22 p.
- Humphreys, E. D. (1995): Post-Laramide removal of the Farallon slab, western United States. Geology, 23(11), 987-990.
- Humphreys, E., Hessler, E., Dueker, K., Farmer, G. L., Erslev, E., & Atwater, T. (2003): How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. International Geology Review, 45(7), 575-595.
- Hunsaker III, E.L. (2010): Technical Report on the Railroad Project, Elko County, Nevada, USA. NI 43-101 report prepared for Gold Standard Ventures Corp. dated May 9, 2010, 67 p.
- Hunsaker III, E.L. (2012a): Technical Report on the Railroad Project, Elko County, Nevada, USA. NI 43-101 report prepared for Gold Standard Ventures Corp. dated February 15, 2012, 78 p.
- Hunsaker III, E.L. (2012b): Amended and Restated Technical Report on the Railroad Project, Elko County, Nevada, USA. NI 43-101 report prepared for Gold Standard Ventures Corp dated April 18, 2012, 82 p.
- Ibrado, A.S., Sletten, M., Ristorcelli, S., Lindholm, M., Dufresne, M.B., Dyer, T., Simmons, G.L., Defilippi, C., DeLong, R., Myers, K.L. (2020): South Railroad Project Form 43-101F1 Technical Report Updated Preliminary Feasibility Study Elko County, Nevada; Prepared for Gold Standard Ventures Corp., March 23, 2020.
- Iverson, B.G. (1991): Stratigraphy of Devonian-Mississippian rocks, northern Pinyon Range, southwestern Elko County, Nevada: M.S. thesis, University of Nevada, Reno, 88 p.

- Jennings, D. K. (2001): Lumps Claims, Elko Nevada: Summary and Conclusions. Part of Internal company report.
- Jones, W.C. and Postlethwaite, C. (1993): Pony Creek Project, 1992 Annual Report: Westmont internal report, 25 p.
- Koehler, S.R., Dufresne, M.B. and Turner, A. (2014): Technical Report on the Railroad and Pinion Projects, Elko County, Nevada USA. NI 43-101 report prepared for Gold Standard Ventures Corp. dated March 31, 2014, 158 p.
- LaPointe, D., Tingley, J.V. and Jones, R.B. (1991): Mineral Resources of Elko County, Nevada, Nevada Bureau of Mines and Geology Bulletin 106.
- Longo, A.A., Thompson, T.B., and Harlan J.B. (2002): Geologic Overview of the Rain Subdistrict, in: Gold Deposits of the Carlin Trend, edited by Tommy B. Thompson, Lewis Teal, and Richard O. Meeuwig, Nevada Bureau of Mines and Geology Bulletin 111.
- Lund Snee, J. E. (2013). Geology and geochronology of Cenozoic units in the Piñon Range and Huntington Valley, Nevada (Doctoral dissertation, MS thesis, Stanford University).
- Lund Snee, J., and Miller, E.L. (2015): Preliminary geologic map of Cenozoic units of the central Robinson Mountain volcanic field and northwestern Huntington Valley, Elko County, Nevada: Nevada Bureau of Mines and Geology Open-file Report 15-2, scale 1:24,000, 42 p.
- Mathewson, D.C. (2001): Tectono-Stratigraphic Setting for the Rain District Gold Deposits, Carlin Trend, Nevada, in: Shaddrick, D.R., Zbinden, E.A., Mathewson, D.C. and Prenn, C. (eds.) Regional Tectonics and Structural Control of Ore: The Major Gold Trends of Northern Nevada, Geological Society of Nevada Special Publication 33.
- Muntean, J.L., Cline, J.S., Simon, A.C., and Longo, A. A. (2011): Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits: Nature Geoscience, v. 4, p. 121-127.
- Newmont Corp. (2022): Nevada, U.S.A; Company Website, accessed February 6, 2022, at https://www.newmont.com/operations-and-projects/global-presence/north-america/nevada-us/default.aspx#nevada>.
- Rayias, A.C. (1999): Stratigraphy, Structural Geology, Alteration, and Geochemistry of the Northeastern Railroad District, Elko County, Nevada, University of Nevada-Reno M.S. Thesis.
- Ressel, M.W. (2000): Summary of research on igneous rocks and gold deposits on the Carlin Trend, Nevada: Ralph J. Roberts Center for Research in Economic Geology Annual Research meeting-1999, Program and Reports, 38 p.
- Ressel, M.W., Dendas, M., Lujan, R., Essman, J. and Shumway, P.J. (2015): Shallow Expressions of Carlin-type Hydrothermal Systems: An Example from the Emigrant Mine, Carlin Trend, Nevada; p409-433.
- Rhys, D., Valli, F., Burgess, R., Heitt, D., Greisel, G., Hart, K., and Garside, L. J. (2015): Controls of fault and fold geometry on the distribution of gold mineralization on the Carlin trend. In New

- concepts and discoveries: Proceedings, Geological Society of Nevada Symposium (Vol. 1, pp. 333-389).
- Robert, F., Brommecker, R., Bourne, B., Dobak, P.J., Mcewan, C., Rowe, R.R. and Zhou, X. (2007): Models and exploration methods for major gold deposit types, Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, p. 691-711.
- Russell, R.H. (1999): Pony Creek Property, Elko County: internal report prepared for Quest International Management Services, Inc., 9 p.
- Russell, R.H. (2004): Evaluation of the Gold Resource on the Pony Creek Property, Larrabee Mining District Elko County, Nevada: NI 43-101 report prepared for Mill City International Corp., 75 p., available on January 11, 2022 at < www.sedar.com>
- Russell, R.H. (2006): Evaluation of the Gold Resource on the Pony Creek Property, Larrabee Mining District Elko County, Nevada: NI 43-101 report prepared for Vista Gold Corp. and Allied Nevada Gold Corp., 130 p., available on January 11, 2022 at < www.sedar.com >
- Saminather, N. (2019): Newmont cuts 120 jobs at Nevada gold mining operation, Reuters. Last updated January 10, 2019. Accessed February 6, 2022, https://www.reuters.com/article/us-newmont-mining-redundancies-idUSKCN1P42TJ
- Seedorff, E. (1991): Magmatism, extension, and ore deposits of Eocene to Holocene age in the Great Basin—Mutual effects and preliminary proposed genetic relationships, in Raines, G. L., Lisle, R. E., Schafer, R. W., and Wilkinson, W. H., eds., Geology and ore deposits of the Great Basin: Geological Society of Nevada Symposium Proceedings, Reno, Nevada, p. 133–178.
- Shaddrick, D.R. (2012): Technical Report on the Railroad Project, Elko County, Nevada, USA, NI 43-101 report prepared for Gold Standard Ventures Corp.
- Silberling, N.J., Nichols, K.M., Trexler, J.H., Jr., Jewell, P.W., and Crosbie, R.A. (1997): Overview of Mississippian depositional and paleotectonic history of the Antler foreland, eastern Nevada and western Utah: in Link P.K., and Kowalis, B.J., eds., Proterozoic to Recent stratigraphy, tectonics, and volcanology, Utah, Nevada, southern Idaho, and central Mexico: Brigham Young University Studies, v. 42, pt. 1, p. 161-196.
- Smith, R.M. (1976): Mineral resources of the Elko County, Nevada, Nevada Bureau of Mines and Geology, Open File Report 76-56, 205 p.
- Smith, J.F., Jr., and Ketner, K.B. (1975): Stratigraphy of Paleozoic rocks in the Carlin-Pinyon Range area, Nevada: U.S. Geological Survey Professional Paper 867-A, 83 p.
- Smith, J.F., Jr., and Ketner, K.B. (1976): Stratigraphy of post-Paleozoic rocks and summary of resources in the Carlin-Pinyon Range area, Nevada, with a section on Aeromagnetic survey, by D.R. Mabey: U.S. Geologic Survey Professional Paper 867-B, 48 p.
- Smith, J.F. and Ketner, K.B. (1978): Geologic map of the Carlin-Pinon Range area, Elke and Eureka counties, Nevada (No. 1028).

- Spalding, V. (2018): NI 43-101 technical report, Pony Creek Project, Elko County, Nevada, United States of America, NI 43-101 report prepared for Contact Gold Corp. dated October 22, 2018, 118 p.
- Stewart, J.H. (1980): Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4, 136 p.
- Teal, L. and Jackson, M. (2002): Geologic Overview of the Carlin Trend Gold Deposits, 11p.
- Tosdal, R.M. (1999): Overview of Carlin-type gold deposits in the Great Basin, Western USA, In: Hodgson, C.J., and Franklin, J.M., (eds.) New developments in the geological understanding of some major ore types and environments, with implications for exploration: Toronto, Prospectors and Developers Association of Canada, p. 127-145.
- Westaway, R. (1999): The mechanical feasibility of low-angle normal faulting. Tectonophysics, 308(4), 407-443.
- Western Regional Climate Center Historic Climate Information (2011): Carlin Newmont Mine, Nevada, 2011. Administered by N.O.A.A., available on January 7, 2022 at < https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?nvcarl >
- Wright, J.L. (2006a): Lumps Geophysics. Internal company report, 5 p.
- Wright, J.L. (2006b): Bailey Hills Property: CSAMT Survey, GIS Database Compilation, Phase 1. Consolidated Global Minerals internal company report, 13 p.
- Wright, J.L. (2006c): Bailey Hills Property: CSAMT Survey, GIS Database Compilation, Phase 2. Consolidated Global Minerals internal company report, 17 p.
- Wright, J.L. (2007): Indian Creek Property: Gravity Survey, GIS Compilation. Gold Run Inc. internal company report, 9 p.
- Wright, J.L. (2017a): Pony Creek Property Gravity Survey 2017 GIS Database: Technical Report, JL Geophysics, September 10, 2017.
- Wright, J.L. (2017b): Pony Creek Property CSAMT Survey 2017 GIS Compilation: Technical Report, JL Wright Geophysics, December 28, 2017.
- Wright, J.L. (2018): Pony Creek Property CSAMT Survey 2018 GIS Compilation: Technical Report, JL Wright Geophysics, July 29, 2018.

28 Certificate of Author

- I, Michael Dufresne, M.Sc., P.Geol., P.Geo. do hereby certify that:
- 1. I am President and a Principal of APEX Geoscience Ltd., Suite 100, 11450 160th Street NW, Edmonton, AB, Canada, T5M 3Y7.
- 2. I graduated with a B.Sc. Degree in Geology from the University of North Carolina at Wilmington in 1983 and a M.Sc. Degree in Economic Geology from the University of Alberta in 1987.
- 3. I am and have been registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists ("APEGA") of Alberta since 1989 and a Professional Geoscientist with the Association of Professional Engineers and Geoscientists ("EGBC") of British Columbia since 2012.
- 4. I have worked as a geologist for more than 35 years since my graduation from university and have extensive experience with exploration for, and the evaluation of, gold deposits of various types, including sediment-hosted (Carlin-type) mineralization.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. I am responsible for all sections of the "Technical Report and Maiden Mineral Resource Estimate, Pony Creek Property, Elko County, Nevada, USA", with an effective date of February 24th, 2022 (the "Technical Report"). I have personally conducted a visit to the Property on January 26-27th, 2022.
- 7. To the best of my knowledge, information and belief, the Technical Report contains all relevant scientific and technical information that is required to be disclosed, to make the Technical Report not misleading.
- 8. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 9. I am independent of the issuer, the vendor and the Property applying all of the tests in section 1.5 of both NI 43-101 and 43-101CP.
- 10. In 2014 I co-authored an NI 43-101 technical report written on behalf of Gold Standard Ventures Corp. for the East Bailey property situated in the southern part of the Pony Creek Property. Gold Standard Ventures Corp. is not related to Contact Gold Corp. or Clover Nevada II LLC. I visited the East Bailey property on April 23, 2014, on behalf of Gold Standard Ventures Corp. for verification purposes. The published reference related to this work is included in Section 27, References (see Dufresne and Schoeman, 2014).
- 11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites.

Effective date: February 24th, 2022

Edmonton, Alberta, Canada

Michael B. Dufresne, M.Sc., P.Geol., P.Geo.

- I, Fallon Clarke, B.Sc., P.Geo., do hereby certify that:
- 1. I am a Consulting Geologist with APEX Geoscience Ltd., Suite 100, 11450 160th Street NW, Edmonton, AB, Canada, T5M 3Y7.
- 2. I graduated with a B.Sc. Degree in Geology from the University of Saskatchewan in 2010.
- 3. I am and have been registered as a Professional Geologist with the Association of Professional Engineers and Geoscientists ("APEGS") of Saskatchewan since 2015.
- 4. I have worked as a geologist for more than ten years since my graduation from university and have experience with exploration for precious and base metal deposits of various types throughout North America and Australia, including sediment-hosted (Carlin-type) gold deposits in Nevada.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. Under the supervision of Michael Dufresne, I contributed to and assisted in the preparation of Sections 1 to 13 and 23 to 27 of the Technical Report titled "Technical Report and Maiden Mineral Resource Estimate, Pony Creek Property, Elko County, Nevada, USA", with an effective date of February 24th, 2022 (the "Technical Report"). I have not visited the Pony Creek Property.
- 7. To the best of my knowledge, information and belief, the Technical Report contains all relevant scientific and technical information that is required to be disclosed, to make the Technical Report not misleading.
- 8. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 9. I am independent of the issuer, the vendor and the Property applying all of the tests in Section 1.5 of both NI 43-101 and 43-101CP.
- 10. I have not had any prior involvement with the Property that is the subject of the Technical Report.
- 11. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites.

Effective date: February 24th, 2022 Edmonton, Alberta, Canada

ONAL GEOR

Fallon T. Clarke, B.Sc., P.Geo.

Appendix I – Pony Creek Property Mineral Claim List

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101647106	NV101647106	NMC810088	NMC810080	JAK 1	9/13/1999
NV101647107	NV101647107	NMC810089	NMC810080	JAK 2	9/13/1999
NV101647108	NV101647108	NMC810090	NMC810080	JAK 3	9/13/1999
NV101647109	NV101647109	NMC810091	NMC810080	JAK 4	9/13/1999
NV101647110	NV101647110	NMC810092	NMC810080	JAK 5	9/13/1999
NV101647111	NV101647111	NMC810093	NMC810080	JAK 6	9/13/1999
NV101647112	NV101647112	NMC810094	NMC810080	JAK 7	9/13/1999
NV101647113	NV101647113	NMC810095	NMC810080	JAK 8	9/13/1999
NV101648307	NV101648307	NMC810096	NMC810080	JAK 9	9/13/1999
NV101648308	NV101648308	NMC810097	NMC810080	JAK 10	9/13/1999
NV101648309	NV101648309	NMC810098	NMC810080	JAK 11	9/13/1999
NV101648310	NV101648310	NMC810099	NMC810080	JAK 12	9/13/1999
NV101648311	NV101648311	NMC810100	NMC810080	JAK 13	9/13/1999
NV101648312	NV101648312	NMC810101	NMC810080	JAK 14	9/13/1999
NV101648313	NV101648313	NMC810102	NMC810080	JAK 15	9/13/1999
NV101648314	NV101648314	NMC810103	NMC810080	JAK 16	9/13/1999
NV101648315	NV101648315	NMC810104	NMC810080	JAK 17	9/13/1999
NV101648316	NV101648316	NMC810105	NMC810080	JAK 18	9/13/1999
NV101648317	NV101648317	NMC810106	NMC810080	JAK 19	9/13/1999
NV101648318	NV101648318	NMC810107	NMC810080	JAK 20	9/13/1999
NV101648319	NV101648319	NMC810108	NMC810080	JAK 21	9/13/1999
NV101648320	NV101648320	NMC810109	NMC810080	JAK 22	9/13/1999
NV101648321	NV101648321	NMC810110	NMC810080	JAK 23	9/13/1999
NV101823001	NV101823001	NMC810111	NMC810080	JAK 24	9/13/1999
NV101823002	NV101823002	NMC810112	NMC810080	JAK 25	9/13/1999
NV101823003	NV101823003	NMC810113	NMC810080	JAK 26	9/13/1999
NV101823004	NV101823004	NMC810114	NMC810080	JAK 27	9/13/1999
NV101823005	NV101823005	NMC810115	NMC810080	JAK 28	9/13/1999
NV101823006	NV101823006	NMC810116	NMC810080	JAK 29	9/13/1999
NV101823007	NV101823007	NMC810117	NMC810080	JAK 30	9/13/1999
NV101823008	NV101823008	NMC810118	NMC810080	JAK 31	9/13/1999
NV101823009	NV101823009	NMC810119	NMC810080	JAK 32	9/13/1999
NV101823010	NV101823010	NMC810120	NMC810080	JAK 33	9/13/1999
NV101823011	NV101823011	NMC810121	NMC810080	JAK 34	9/13/1999
NV101823012	NV101823012	NMC810122	NMC810080	JAK 35	9/13/1999
NV101823013	NV101823013	NMC810123	NMC810080	JAK 36	9/13/1999
NV101823014	NV101823014	NMC810124	NMC810080	JAK 37	9/13/1999
NV101823015	NV101823015	NMC810125	NMC810080	JAK 38	9/13/1999

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101823016	NV101823016	NMC810126	NMC810080	JAK 39	9/13/1999
NV101823017	NV101823017	NMC810127	NMC810080	JAK 40	9/13/1999
NV101823018	NV101823018	NMC810128	NMC810080	JAK 41	9/13/1999
NV101823019	NV101823019	NMC810129	NMC810080	JAK 42	9/13/1999
NV101823020	NV101823020	NMC810130	NMC810080	JAK 43	9/13/1999
NV101823021	NV101823021	NMC810131	NMC810080	JAK 44	9/13/1999
NV101823022	NV101823022	NMC810132	NMC810080	JAK 45	9/13/1999
NV101824401	NV101824401	NMC810133	NMC810080	JAK 46	9/13/1999
NV101824402	NV101824402	NMC810134	NMC810080	JAK 47	9/13/1999
NV101824403	NV101824403	NMC810135	NMC810080	JAK 48	9/13/1999
NV101824404	NV101824404	NMC810136	NMC810080	JAK 49	9/13/1999
NV101824405	NV101824405	NMC810137	NMC810080	JAK 50	9/13/1999
NV101824406	NV101824406	NMC810138	NMC810080	JAK 51	9/13/1999
NV101824407	NV101824407	NMC810139	NMC810080	JAK 52	9/13/1999
NV101824408	NV101824408	NMC810140	NMC810080	JAK 53	9/14/1999
NV101824409	NV101824409	NMC810141	NMC810080	JAK 54	9/14/1999
NV101824410	NV101824410	NMC810142	NMC810080	JAK 55	9/14/1999
NV101824411	NV101824411	NMC810143	NMC810080	JAK 56	9/14/1999
NV101824412	NV101824412	NMC810144	NMC810080	JAK 57	9/14/1999
NV101824413	NV101824413	NMC810145	NMC810080	JAK 58	9/14/1999
NV101824414	NV101824414	NMC810146	NMC810080	JAK 59	9/14/1999
NV101824415	NV101824415	NMC810147	NMC810080	JAK 60	9/14/1999
NV101824416	NV101824416	NMC810148	NMC810080	JAK 61	9/14/1999
NV101824417	NV101824417	NMC810149	NMC810080	JAK 62	9/14/1999
NV101824418	NV101824418	NMC810150	NMC810080	JAK 63	9/14/1999
NV101824419	NV101824419	NMC810151	NMC810080	JAK 64	9/14/1999
NV101824420	NV101824420	NMC810152	NMC810080	JAK 65	9/14/1999
NV101824421	NV101824421	NMC810153	NMC810080	JAK 66	9/14/1999
NV101824422	NV101824422	NMC810154	NMC810080	JAK 67	9/14/1999
NV101825601	NV101825601	NMC810155	NMC810080	JAK 68	9/14/1999
NV101825606	NV101825606	NMC810160	NMC810080	JAK 73	9/14/1999
NV101825607	NV101825607	NMC810161	NMC810080	JAK 74	9/14/1999
NV101825608	NV101825608	NMC810162	NMC810080	JAK 75	9/14/1999
NV101825609	NV101825609	NMC810164	NMC810080	JAK 77	9/14/1999
NV101825610	NV101825610	NMC810165	NMC810080	JAK 78	9/14/1999
NV101825611	NV101825611	NMC810166	NMC810080	JAK 79	9/14/1999
NV101825612	NV101825612	NMC810167	NMC810080	JAK 80	9/14/1999
NV101825613	NV101825613	NMC810168	NMC810080	JAK 81	9/14/1999
NV101825614	NV101825614	NMC810169	NMC810080	JAK 82	9/14/1999
NV101825615	NV101825615	NMC810170	NMC810080	JAK 83	9/14/1999

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101825616	NV101825616	NMC810171	NMC810080	JAK 84	9/14/1999
NV101825617	NV101825617	NMC810172	NMC810080	JAK 85	9/14/1999
NV101825618	NV101825618	NMC810173	NMC810080	JAK 86	9/14/1999
NV101825619	NV101825619	NMC810174	NMC810080	JAK 87	9/14/1999
NV101825620	NV101825620	NMC810175	NMC810080	JAK 88	9/14/1999
NV101828213	NV101828213	NMC810163	NMC810080	JAK 76	9/14/1999
NV101825602	NV101825602	NMC810156	NMC810080	JAK 69	9/15/1999
NV101825603	NV101825603	NMC810157	NMC810080	JAK 70	9/15/1999
NV101825604	NV101825604	NMC810158	NMC810080	JAK 71	9/15/1999
NV101825605	NV101825605	NMC810159	NMC810080	JAK 72	9/15/1999
NV101825621	NV101825621	NMC810176	NMC810080	JAK 89	9/15/1999
NV101825622	NV101825622	NMC810177	NMC810080	JAK 90	9/15/1999
NV101826801	NV101826801	NMC810178	NMC810080	JAK 91	9/15/1999
NV101826802	NV101826802	NMC810179	NMC810080	JAK 92	9/15/1999
NV101826803	NV101826803	NMC810180	NMC810080	JAK 101	9/15/1999
NV101826804	NV101826804	NMC810181	NMC810080	JAK 102	9/15/1999
NV101826805	NV101826805	NMC810182	NMC810080	JAK 115	9/15/1999
NV101826806	NV101826806	NMC810183	NMC810080	JAK 116	9/15/1999
NV101826807	NV101826807	NMC810184	NMC810080	JAK 117	9/15/1999
NV101826808	NV101826808	NMC810185	NMC810080	JAK 118	9/15/1999
NV101826809	NV101826809	NMC810186	NMC810080	JAK 119	9/16/1999
NV101826810	NV101826810	NMC810187	NMC810080	JAK 120	9/16/1999
NV101826811	NV101826811	NMC810188	NMC810080	JAK 121	9/16/1999
NV101826812	NV101826812	NMC810189	NMC810080	JAK 122	9/16/1999
NV101826813	NV101826813	NMC810190	NMC810080	JAK 123	9/16/1999
NV101826814	NV101826814	NMC810191	NMC810080	JAK 124	9/16/1999
NV101826815	NV101826815	NMC810192	NMC810080	JAK 125	9/16/1999
NV101826816	NV101826816	NMC810193	NMC810080	JAK 126	9/16/1999
NV101826817	NV101826817	NMC810194	NMC810080	JAK 127	9/16/1999
NV101826818	NV101826818	NMC810195	NMC810080	JAK 128	9/16/1999
NV101647104	NV101647104	NMC810086	NMC810080	APD 32	9/17/1999
NV101647105	NV101647105	NMC810087	NMC810080	APD 34	9/17/1999
NV101828204	NV101828204	NMC810202	NMC810080	JAK 163	9/17/1999
NV101828205	NV101828205	NMC810203	NMC810080	JAK 165	9/17/1999
NV101828206	NV101828206	NMC810204	NMC810080	JAK 167	9/17/1999
NV101828207	NV101828207	NMC810205	NMC810080	JAK 169	9/17/1999
NV101828208	NV101828208	NMC810206	NMC810080	JAK 171	9/17/1999
NV101828209	NV101828209	NMC810207	NMC810080	JAK 173	9/17/1999
NV101828210	NV101828210	NMC810208	NMC810080	JAK 175	9/17/1999
NV101828211	NV101828211	NMC810209	NMC810080	JAK 177	9/17/1999

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101828212	NV101828212	NMC810210	NMC810080	JAK 179	9/17/1999
NV101647098	NV101647098	NMC810080	NMC810080	APD 12	10/11/1999
NV101647099	NV101647099	NMC810081	NMC810080	APD 14	10/11/1999
NV101647100	NV101647100	NMC810082	NMC810080	APD 16	10/11/1999
NV101647101	NV101647101	NMC810083	NMC810080	APD 18	10/11/1999
NV101647102	NV101647102	NMC810084	NMC810080	APD 20	10/11/1999
NV101647103	NV101647103	NMC810085	NMC810080	APD 22	10/11/1999
NV101826819	NV101826819	NMC810196	NMC810080	JAK 151	10/11/1999
NV101826820	NV101826820	NMC810197	NMC810080	JAK 153	10/11/1999
NV101826821	NV101826821	NMC810198	NMC810080	JAK 155	10/11/1999
NV101828201	NV101828201	NMC810199	NMC810080	JAK 157	10/11/1999
NV101828202	NV101828202	NMC810200	NMC810080	JAK 159	10/11/1999
NV101828203	NV101828203	NMC810201	NMC810080	JAK 161	10/11/1999
NV101380481	NV101380481	NMC824969	NMC824969	PC 1	9/11/2001
NV101380482	NV101380482	NMC824970	NMC824969	PC 2	9/11/2001
NV101380483	NV101380483	NMC824971	NMC824969	PC 3	9/11/2001
NV101380484	NV101380484	NMC824972	NMC824969	PC 4	9/11/2001
NV101380485	NV101380485	NMC824973	NMC824969	PC 5	9/11/2001
NV101380486	NV101380486	NMC824974	NMC824969	PC 6	9/11/2001
NV101380487	NV101380487	NMC824975	NMC824969	PC 7	9/11/2001
NV101380488	NV101380488	NMC824976	NMC824969	PC 8	9/11/2001
NV101380489	NV101380489	NMC824977	NMC824969	PC 9	9/11/2001
NV101380490	NV101380490	NMC824978	NMC824969	PC 10	9/11/2001
NV101380491	NV101380491	NMC824979	NMC824969	PC 11	9/11/2001
NV101380492	NV101380492	NMC824980	NMC824969	PC 12	9/11/2001
NV101380493	NV101380493	NMC824981	NMC824969	PC 13	9/11/2001
NV101380494	NV101380494	NMC824982	NMC824969	PC 14	9/11/2001
NV101381648	NV101381648	NMC824983	NMC824969	PC 15	9/11/2001
NV101381649	NV101381649	NMC824984	NMC824969	PC 16	9/11/2001
NV101381650	NV101381650	NMC824985	NMC824969	PC 17	9/11/2001
NV101381651	NV101381651	NMC824986	NMC824969	PC 18	9/11/2001
NV101381652	NV101381652	NMC824987	NMC824969	PC 19	9/11/2001
NV101381653	NV101381653	NMC824988	NMC824969	PC 20	9/11/2001
NV101381654	NV101381654	NMC824989	NMC824969	PC 21	9/11/2001
NV101381655	NV101381655	NMC824990	NMC824969	PC 22	9/11/2001
NV101381656	NV101381656	NMC824991	NMC824969	PC 23	9/11/2001
NV101381657	NV101381657	NMC824992	NMC824969	PC 24	9/11/2001
NV101381658	NV101381658	NMC824993	NMC824969	PC 25	9/11/2001
NV101381659	NV101381659	NMC824994	NMC824969	PC 26	9/11/2001
NV101381660	NV101381660	NMC824995	NMC824969	PC 27	9/11/2001

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101381661	NV101381661	NMC824996	NMC824969	PC 28	9/11/2001
NV101381662	NV101381662	NMC824997	NMC824969	PC 29	9/11/2001
NV101381663	NV101381663	NMC824998	NMC824969	PC 30	9/11/2001
NV101381664	NV101381664	NMC824999	NMC824969	PC 31	9/11/2001
NV101381665	NV101381665	NMC825000	NMC824969	PC 32	9/11/2001
NV101381666	NV101381666	NMC825001	NMC824969	PC 33	9/11/2001
NV101381667	NV101381667	NMC825002	NMC824969	PC 34	9/11/2001
NV101381668	NV101381668	NMC825003	NMC824969	PC 35	9/11/2001
NV101381669	NV101381669	NMC825004	NMC824969	PC 36	9/11/2001
NV101382682	NV101382682	NMC825005	NMC824969	PC 37	9/11/2001
NV101382683	NV101382683	NMC825006	NMC824969	PC 38	9/11/2001
NV101382684	NV101382684	NMC825007	NMC824969	PC 39	9/11/2001
NV101382685	NV101382685	NMC825008	NMC824969	PC 40	9/11/2001
NV101382686	NV101382686	NMC825009	NMC824969	PC 41	9/11/2001
NV101382687	NV101382687	NMC825010	NMC824969	PC 42	9/11/2001
NV101382801	NV101382801	NMC825011	NMC824969	PC 43	9/11/2001
NV101382802	NV101382802	NMC825012	NMC824969	PC 44	9/11/2001
NV101382803	NV101382803	NMC825013	NMC824969	PC 45	9/11/2001
NV101382804	NV101382804	NMC825014	NMC824969	PC 46	9/11/2001
NV101382805	NV101382805	NMC825015	NMC824969	PC 47	9/11/2001
NV101382806	NV101382806	NMC825016	NMC824969	PC 48	9/11/2001
NV101382807	NV101382807	NMC825017	NMC824969	PC 49	9/11/2001
NV101382808	NV101382808	NMC825018	NMC824969	PC 50	9/11/2001
NV101382809	NV101382809	NMC825019	NMC824969	PC 51	9/11/2001
NV101382810	NV101382810	NMC825020	NMC824969	PC 52	9/11/2001
NV101382811	NV101382811	NMC825021	NMC824969	PC 53	9/11/2001
NV101382812	NV101382812	NMC825022	NMC824969	PC 54	9/11/2001
NV101382813	NV101382813	NMC825023	NMC824969	PC 55	9/11/2001
NV101382814	NV101382814	NMC825024	NMC824969	PC 56	9/11/2001
NV101382815	NV101382815	NMC825025	NMC824969	PC 57	9/11/2001
NV101382816	NV101382816	NMC825026	NMC824969	PC 58	9/11/2001
NV101383885	NV101383885	NMC825027	NMC824969	PC 59	9/11/2001
NV101383886	NV101383886	NMC825028	NMC824969	PC 60	9/11/2001
NV101383887	NV101383887	NMC825029	NMC824969	PC 61	9/11/2001
NV101383888	NV101383888	NMC825030	NMC824969	PC 62	9/11/2001
NV101383889	NV101383889	NMC825031	NMC824969	PC 63	9/11/2001
NV101383890	NV101383890	NMC825032	NMC824969	PC 64	9/11/2001
NV101383891	NV101383891	NMC825033	NMC824969	PC 65	9/11/2001
NV101383892	NV101383892	NMC825034	NMC824969	PC 66	9/11/2001
NV101383893	NV101383893	NMC825035	NMC824969	PC 67	9/11/2001

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101383894	NV101383894	NMC825036	NMC824969	PC 68	9/11/2001
NV101383895	NV101383895	NMC825037	NMC824969	PC 69	9/11/2001
NV101388812	NV101388812	NMC831170	NMC831170	PIR 103	6/6/2002
NV101388813	NV101388813	NMC831171	NMC831170	PIR 104	6/6/2002
NV101388814	NV101388814	NMC831172	NMC831170	PIR 105	6/6/2002
NV101388815	NV101388815	NMC831173	NMC831170	PIR 106	6/6/2002
NV101388816	NV101388816	NMC831174	NMC831170	PIR 107	6/6/2002
NV101388817	NV101388817	NMC831175	NMC831170	PIR 108	6/6/2002
NV101388818	NV101388818	NMC831176	NMC831170	PIR 109	6/6/2002
NV101388819	NV101388819	NMC831177	NMC831170	PIR 110	6/6/2002
NV101388820	NV101388820	NMC831178	NMC831170	PIR 111	6/6/2002
NV101388821	NV101388821	NMC831179	NMC831170	PIR 112	6/6/2002
NV101388822	NV101388822	NMC831180	NMC831170	PIR 113	6/6/2002
NV101388823	NV101388823	NMC831181	NMC831170	PIR 114	6/6/2002
NV101388824	NV101388824	NMC831182	NMC831170	PIR 115	6/6/2002
NV101388825	NV101388825	NMC831183	NMC831170	PIR 116	6/6/2002
NV101390024	NV101390024	NMC831184	NMC831170	PIR 117	6/6/2002
NV101390025	NV101390025	NMC831185	NMC831170	PIR 118	6/6/2002
NV101390026	NV101390026	NMC831186	NMC831170	PIR 119	6/6/2002
NV101390027	NV101390027	NMC831187	NMC831170	PIR 120	6/6/2002
NV101390028	NV101390028	NMC831188	NMC831170	PIR 121	6/6/2002
NV101390029	NV101390029	NMC831189	NMC831170	PIR 122	6/6/2002
NV101390030	NV101390030	NMC831190	NMC831170	PIR 123	6/6/2002
NV101390031	NV101390031	NMC831191	NMC831170	PIR 124	6/6/2002
NV101390032	NV101390032	NMC831192	NMC831170	PIR 125	6/6/2002
NV101365221	NV101365221	NMC834425	NMC834425	PC 70	9/1/2002
NV101365222	NV101365222	NMC834426	NMC834425	PC 71	9/1/2002
NV101365223	NV101365223	NMC834427	NMC834425	PC 72	9/1/2002
NV101365224	NV101365224	NMC834428	NMC834425	PC 73	9/1/2002
NV101365225	NV101365225	NMC834429	NMC834425	PC 74	9/1/2002
NV101365226	NV101365226	NMC834430	NMC834425	PC 75	9/1/2002
NV101365227	NV101365227	NMC834431	NMC834425	PC 76	9/1/2002
NV101365228	NV101365228	NMC834432	NMC834425	PC 77	9/1/2002
NV101365229	NV101365229	NMC834433	NMC834425	PC 78	9/1/2002
NV101366022	NV101366022	NMC834434	NMC834425	PC 79	9/1/2002
NV101366023	NV101366023	NMC834435	NMC834425	PC 80	9/1/2002
NV101366024	NV101366024	NMC834436	NMC834425	PC 81	9/1/2002
NV101366025	NV101366025	NMC834437	NMC834425	PC 82	9/1/2002
NV101366026	NV101366026	NMC834438	NMC834425	PC 83	9/1/2002
NV101366027	NV101366027	NMC834439	NMC834425	PC 84	9/1/2002

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101366028	NV101366028	NMC834440	NMC834425	PC 85	9/1/2002
NV101366029	NV101366029	NMC834441	NMC834425	PC 86	9/1/2002
NV101366030	NV101366030	NMC834442	NMC834425	PC 87	9/1/2002
NV101366031	NV101366031	NMC834443	NMC834425	PC 88	9/1/2002
NV101366032	NV101366032	NMC834444	NMC834425	PC 89	9/1/2002
NV101366033	NV101366033	NMC834445	NMC834425	PC 90	9/1/2002
NV101366034	NV101366034	NMC834446	NMC834425	PC 91	9/1/2002
NV101366035	NV101366035	NMC834447	NMC834425	PC 92	9/1/2002
NV101366036	NV101366036	NMC834448	NMC834425	PC 93	9/1/2002
NV101363447	NV101363447	NMC834419	NMC834419	BAILEY 1	10/12/2002
NV101363448	NV101363448	NMC834420	NMC834419	BAILEY 2	10/12/2002
NV101654341	NV101654341	NMC854529	NMC854529	LUMPS 1	10/11/2003
NV101654342	NV101654342	NMC854530	NMC854529	LUMPS 2	10/11/2003
NV101654343	NV101654343	NMC854531	NMC854529	LUMPS 3	10/11/2003
NV101654344	NV101654344	NMC854532	NMC854529	LUMPS 4	10/11/2003
NV101654345	NV101654345	NMC854533	NMC854529	LUMPS 5	10/11/2003
NV101654346	NV101654346	NMC854534	NMC854529	LUMPS 6	10/11/2003
NV101654347	NV101654347	NMC854535	NMC854529	LUMPS 7	10/11/2003
NV101654348	NV101654348	NMC854536	NMC854529	LUMPS 8	10/11/2003
NV101654349	NV101654349	NMC854537	NMC854529	LUMPS 9	10/11/2003
NV101654350	NV101654350	NMC854538	NMC854529	LUMPS 10	10/11/2003
NV101654351	NV101654351	NMC854539	NMC854529	LUMPS 11	10/11/2003
NV101654352	NV101654352	NMC854540	NMC854529	LUMPS 12	10/11/2003
NV101654353	NV101654353	NMC854541	NMC854529	LUMPS 13	10/11/2003
NV101654354	NV101654354	NMC854542	NMC854529	LUMPS 14	10/11/2003
NV101654355	NV101654355	NMC854543	NMC854529	LUMPS 15	10/11/2003
NV101654356	NV101654356	NMC854544	NMC854529	LUMPS 16	10/11/2003
NV101654357	NV101654357	NMC854545	NMC854529	LUMPS 17	10/11/2003
NV101654927	NV101654927	NMC854546	NMC854529	LUMPS 18	10/11/2003
NV101654928	NV101654928	NMC854547	NMC854529	LUMPS 19	10/11/2003
NV101654929	NV101654929	NMC854548	NMC854529	LUMPS 20	10/11/2003
NV101654930	NV101654930	NMC854549	NMC854529	LUMPS 21	10/11/2003
NV101654931	NV101654931	NMC854550	NMC854529	LUMPS 22	10/11/2003
NV101311420	NV101311420	NMC886256	NMC885803	RR 272	9/15/2004
NV101311421	NV101311421	NMC886258	NMC885803	RR 274	9/15/2004
NV101312601	NV101312601	NMC886260	NMC885803	RR 276	9/15/2004
NV101312602	NV101312602	NMC886262	NMC885803	RR 278	9/15/2004
NV101312603	NV101312603	NMC886264	NMC885803	RR 280	9/15/2004
NV101312604	NV101312604	NMC886266	NMC885803	RR 282	9/15/2004
NV101312605	NV101312605	NMC886268	NMC885803	RR 284	9/15/2004

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101312606	NV101312606	NMC886270	NMC885803	RR 286	9/15/2004
NV101312607	NV101312607	NMC886271	NMC885803	RR 287	9/15/2004
NV101312608	NV101312608	NMC886272	NMC885803	RR 288	9/15/2004
NV101312609	NV101312609	NMC886273	NMC885803	RR 289	9/15/2004
NV101312610	NV101312610	NMC886274	NMC885803	RR 290	9/15/2004
NV101651229	NV101651229	NMC886080	NMC885803	RR 96	9/15/2004
NV101651230	NV101651230	NMC886081	NMC885803	RR 97	9/15/2004
NV101651231	NV101651231	NMC886082	NMC885803	RR 98	9/15/2004
NV101678246	NV101678246	NMC885995	NMC885803	RR 9	9/15/2004
NV101678247	NV101678247	NMC885996	NMC885803	RR 10	9/15/2004
NV101678248	NV101678248	NMC885997	NMC885803	RR 11	9/15/2004
NV101678249	NV101678249	NMC885998	NMC885803	RR 12	9/15/2004
NV101678250	NV101678250	NMC885999	NMC885803	RR 13	9/15/2004
NV101678251	NV101678251	NMC886000	NMC885803	RR 14	9/15/2004
NV101678252	NV101678252	NMC886001	NMC885803	RR 15	9/15/2004
NV101678253	NV101678253	NMC886002	NMC885803	RR 16	9/15/2004
NV101678254	NV101678254	NMC886003	NMC885803	RR 17	9/15/2004
NV101678255	NV101678255	NMC886004	NMC885803	RR 18	9/15/2004
NV101679243	NV101679243	NMC886005	NMC885803	RR 19	9/15/2004
NV101679244	NV101679244	NMC886006	NMC885803	RR 20	9/15/2004
NV101679245	NV101679245	NMC886007	NMC885803	RR 21	9/15/2004
NV101679246	NV101679246	NMC886008	NMC885803	RR 22	9/15/2004
NV101679247	NV101679247	NMC886009	NMC885803	RR 23	9/15/2004
NV101679248	NV101679248	NMC886010	NMC885803	RR 24	9/15/2004
NV101679249	NV101679249	NMC886011	NMC885803	RR 25	9/15/2004
NV101679250	NV101679250	NMC886012	NMC885803	RR 26	9/15/2004
NV101679251	NV101679251	NMC886013	NMC885803	RR 27	9/15/2004
NV101679252	NV101679252	NMC886014	NMC885803	RR 28	9/15/2004
NV101679253	NV101679253	NMC886015	NMC885803	RR 29	9/15/2004
NV101679254	NV101679254	NMC886016	NMC885803	RR 30	9/15/2004
NV101679255	NV101679255	NMC886017	NMC885803	RR 31	9/15/2004
NV101679256	NV101679256	NMC886018	NMC885803	RR 32	9/15/2004
NV101679257	NV101679257	NMC886019	NMC885803	RR 33	9/15/2004
NV101679258	NV101679258	NMC886020	NMC885803	RR 34	9/15/2004
NV101680238	NV101680238	NMC886021	NMC885803	RR 35	9/15/2004
NV101680239	NV101680239	NMC886022	NMC885803	RR 36	9/15/2004
NV101680240	NV101680240	NMC886023	NMC885803	RR 37	9/15/2004
NV101680241	NV101680241	NMC886024	NMC885803	RR 38	9/15/2004
NV101680242	NV101680242	NMC886025	NMC885803	RR 39	9/15/2004
NV101680243	NV101680243	NMC886026	NMC885803	RR 40	9/15/2004

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101680244	NV101680244	NMC886027	NMC885803	RR 41	9/15/2004
NV101680245	NV101680245	NMC886057	NMC885803	RR 73	9/15/2004
NV101680246	NV101680246	NMC886058	NMC885803	RR 74	9/15/2004
NV101680247	NV101680247	NMC886059	NMC885803	RR 75	9/15/2004
NV101680248	NV101680248	NMC886060	NMC885803	RR 76	9/15/2004
NV101680249	NV101680249	NMC886061	NMC885803	RR 77	9/15/2004
NV101680250	NV101680250	NMC886062	NMC885803	RR 78	9/15/2004
NV101680251	NV101680251	NMC886071	NMC885803	RR 87	9/15/2004
NV101680252	NV101680252	NMC886072	NMC885803	RR 88	9/15/2004
NV101680253	NV101680253	NMC886073	NMC885803	RR 89	9/15/2004
NV101680254	NV101680254	NMC886074	NMC885803	RR 90	9/15/2004
NV101680255	NV101680255	NMC886075	NMC885803	RR 91	9/15/2004
NV101680256	NV101680256	NMC886076	NMC885803	RR 92	9/15/2004
NV101680257	NV101680257	NMC886077	NMC885803	RR 93	9/15/2004
NV101680258	NV101680258	NMC886078	NMC885803	RR 94	9/15/2004
NV101680259	NV101680259	NMC886079	NMC885803	RR 95	9/15/2004
NV101311401	NV101311401	NMC886220	NMC885803	RR 236	9/21/2004
NV101311402	NV101311402	NMC886221	NMC885803	RR 237	9/21/2004
NV101311403	NV101311403	NMC886222	NMC885803	RR 238	9/21/2004
NV101311404	NV101311404	NMC886223	NMC885803	RR 239	9/21/2004
NV101311405	NV101311405	NMC886224	NMC885803	RR 240	9/21/2004
NV101311406	NV101311406	NMC886225	NMC885803	RR 241	9/21/2004
NV101311407	NV101311407	NMC886226	NMC885803	RR 242	9/21/2004
NV101311408	NV101311408	NMC886227	NMC885803	RR 243	9/21/2004
NV101311409	NV101311409	NMC886228	NMC885803	RR 244	9/21/2004
NV101311410	NV101311410	NMC886229	NMC885803	RR 245	9/21/2004
NV101311411	NV101311411	NMC886230	NMC885803	RR 246	9/21/2004
NV101311412	NV101311412	NMC886247	NMC885803	RR 263	9/21/2004
NV101311413	NV101311413	NMC886248	NMC885803	RR 264	9/21/2004
NV101311414	NV101311414	NMC886249	NMC885803	RR 265	9/21/2004
NV101311415	NV101311415	NMC886250	NMC885803	RR 266	9/21/2004
NV101311416	NV101311416	NMC886251	NMC885803	RR 267	9/21/2004
NV101311417	NV101311417	NMC886252	NMC885803	RR 268	9/21/2004
NV101311418	NV101311418	NMC886253	NMC885803	RR 269	9/21/2004
NV101311419	NV101311419	NMC886254	NMC885803	RR 270	9/21/2004
NV101313816	NV101313816	NMC886301	NMC885803	RR 317	9/21/2004
NV101313817	NV101313817	NMC886302	NMC885803	RR 318	9/21/2004
NV101313818	NV101313818	NMC886303	NMC885803	RR 319	9/21/2004
NV101313819	NV101313819	NMC886304	NMC885803	RR 320	9/21/2004
NV101313820	NV101313820	NMC886305	NMC885803	RR 321	9/21/2004

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101316214	NV101316214	NMC886341	NMC885803	RR 357	9/21/2004
NV101316215	NV101316215	NMC886342	NMC885803	RR 358	9/21/2004
NV101316216	NV101316216	NMC886343	NMC885803	RR 359	9/21/2004
NV101316217	NV101316217	NMC886344	NMC885803	RR 360	9/21/2004
NV101316218	NV101316218	NMC886345	NMC885803	RR 361	9/21/2004
NV101316219	NV101316219	NMC886346	NMC885803	RR 362	9/21/2004
NV101651232	NV101651232	NMC886085	NMC885803	RR 101	9/21/2004
NV101651233	NV101651233	NMC886086	NMC885803	RR 102	9/21/2004
NV101651234	NV101651234	NMC886087	NMC885803	RR 103	9/21/2004
NV101651235	NV101651235	NMC886088	NMC885803	RR 104	9/21/2004
NV101651236	NV101651236	NMC886089	NMC885803	RR 105	9/21/2004
NV101651237	NV101651237	NMC886090	NMC885803	RR 106	9/21/2004
NV101651238	NV101651238	NMC886099	NMC885803	RR 115	9/21/2004
NV101651239	NV101651239	NMC886100	NMC885803	RR 116	9/21/2004
NV101651240	NV101651240	NMC886101	NMC885803	RR 117	9/21/2004
NV101651241	NV101651241	NMC886102	NMC885803	RR 118	9/21/2004
NV101651242	NV101651242	NMC886103	NMC885803	RR 119	9/21/2004
NV101651243	NV101651243	NMC886104	NMC885803	RR 120	9/21/2004
NV101651244	NV101651244	NMC886105	NMC885803	RR 121	9/21/2004
NV101651245	NV101651245	NMC886106	NMC885803	RR 122	9/21/2004
NV101651246	NV101651246	NMC886107	NMC885803	RR 123	9/21/2004
NV101651247	NV101651247	NMC886108	NMC885803	RR 124	9/21/2004
NV101651248	NV101651248	NMC886109	NMC885803	RR 125	9/21/2004
NV101651249	NV101651249	NMC886110	NMC885803	RR 126	9/21/2004
NV101651250	NV101651250	NMC886111	NMC885803	RR 127	9/21/2004
NV101652227	NV101652227	NMC886113	NMC885803	RR 129	9/21/2004
NV101652228	NV101652228	NMC886115	NMC885803	RR 131	9/21/2004
NV101652229	NV101652229	NMC886116	NMC885803	RR 132	9/21/2004
NV101652230	NV101652230	NMC886119	NMC885803	RR 135	9/21/2004
NV101652231	NV101652231	NMC886120	NMC885803	RR 136	9/21/2004
NV101652232	NV101652232	NMC886121	NMC885803	RR 137	9/21/2004
NV101652233	NV101652233	NMC886122	NMC885803	RR 138	9/21/2004
NV101652234	NV101652234	NMC886123	NMC885803	RR 139	9/21/2004
NV101652235	NV101652235	NMC886124	NMC885803	RR 140	9/21/2004
NV101652236	NV101652236	NMC886125	NMC885803	RR 141	9/21/2004
NV101652237	NV101652237	NMC886126	NMC885803	RR 142	9/21/2004
NV101652238	NV101652238	NMC886127	NMC885803	RR 143	9/21/2004
NV101652239	NV101652239	NMC886128	NMC885803	RR 144	9/21/2004
NV101652240	NV101652240	NMC886129	NMC885803	RR 145	9/21/2004
NV101652241	NV101652241	NMC886130	NMC885803	RR 146	9/21/2004

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101652242	NV101652242	NMC886131	NMC885803	RR 147	9/21/2004
NV101652243	NV101652243	NMC886132	NMC885803	RR 148	9/21/2004
NV101652244	NV101652244	NMC886133	NMC885803	RR 149	9/21/2004
NV101652245	NV101652245	NMC886134	NMC885803	RR 150	9/21/2004
NV101652246	NV101652246	NMC886135	NMC885803	RR 151	9/21/2004
NV101652247	NV101652247	NMC886136	NMC885803	RR 152	9/21/2004
NV101652248	NV101652248	NMC886137	NMC885803	RR 153	9/21/2004
NV101653126	NV101653126	NMC886138	NMC885803	RR 154	9/21/2004
NV101653127	NV101653127	NMC886139	NMC885803	RR 155	9/21/2004
NV101653128	NV101653128	NMC886140	NMC885803	RR 156	9/21/2004
NV101653129	NV101653129	NMC886141	NMC885803	RR 157	9/21/2004
NV101653130	NV101653130	NMC886142	NMC885803	RR 158	9/21/2004
NV101653131	NV101653131	NMC886143	NMC885803	RR 159	9/21/2004
NV101653132	NV101653132	NMC886144	NMC885803	RR 160	9/21/2004
NV101653133	NV101653133	NMC886145	NMC885803	RR 161	9/21/2004
NV101653134	NV101653134	NMC886146	NMC885803	RR 162	9/21/2004
NV101653135	NV101653135	NMC886147	NMC885803	RR 163	9/21/2004
NV101653136	NV101653136	NMC886148	NMC885803	RR 164	9/21/2004
NV101653137	NV101653137	NMC886149	NMC885803	RR 165	9/21/2004
NV101653138	NV101653138	NMC886150	NMC885803	RR 166	9/21/2004
NV101653139	NV101653139	NMC886151	NMC885803	RR 167	9/21/2004
NV101653140	NV101653140	NMC886152	NMC885803	RR 168	9/21/2004
NV101653141	NV101653141	NMC886153	NMC885803	RR 169	9/21/2004
NV101653142	NV101653142	NMC886154	NMC885803	RR 170	9/21/2004
NV101653143	NV101653143	NMC886155	NMC885803	RR 171	9/21/2004
NV101653144	NV101653144	NMC886156	NMC885803	RR 172	9/21/2004
NV101653145	NV101653145	NMC886157	NMC885803	RR 173	9/21/2004
NV101653146	NV101653146	NMC886158	NMC885803	RR 174	9/21/2004
NV101653147	NV101653147	NMC886159	NMC885803	RR 175	9/21/2004
NV101654074	NV101654074	NMC886160	NMC885803	RR 176	9/21/2004
NV101654075	NV101654075	NMC886161	NMC885803	RR 177	9/21/2004
NV101654076	NV101654076	NMC886162	NMC885803	RR 178	9/21/2004
NV101654077	NV101654077	NMC886163	NMC885803	RR 179	9/21/2004
NV101654078	NV101654078	NMC886164	NMC885803	RR 180	9/21/2004
NV102524801	NV102524801	NMC886165	NMC885803	RR 181	9/21/2004
NV102524802	NV102524802	NMC886166	NMC885803	RR 182	9/21/2004
NV102524803	NV102524803	NMC886167	NMC885803	RR 183	9/21/2004
NV102524804	NV102524804	NMC886168	NMC885803	RR 184	9/21/2004
NV102524805	NV102524805	NMC886169	NMC885803	RR 185	9/21/2004
NV102524806	NV102524806	NMC886170	NMC885803	RR 186	9/21/2004

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV102524807	NV102524807	NMC886171	NMC885803	RR 187	9/21/2004
NV102524808	NV102524808	NMC886172	NMC885803	RR 188	9/21/2004
NV102524809	NV102524809	NMC886173	NMC885803	RR 189	9/21/2004
NV102524810	NV102524810	NMC886174	NMC885803	RR 190	9/21/2004
NV102524811	NV102524811	NMC886175	NMC885803	RR 191	9/21/2004
NV102524812	NV102524812	NMC886176	NMC885803	RR 192	9/21/2004
NV102524813	NV102524813	NMC886177	NMC885803	RR 193	9/21/2004
NV102524814	NV102524814	NMC886178	NMC885803	RR 194	9/21/2004
NV102524815	NV102524815	NMC886179	NMC885803	RR 195	9/21/2004
NV102524816	NV102524816	NMC886180	NMC885803	RR 196	9/21/2004
NV102524817	NV102524817	NMC886181	NMC885803	RR 197	9/21/2004
NV102524818	NV102524818	NMC886182	NMC885803	RR 198	9/21/2004
NV102524819	NV102524819	NMC886217	NMC885803	RR 233	9/21/2004
NV102524820	NV102524820	NMC886218	NMC885803	RR 234	9/21/2004
NV102524821	NV102524821	NMC886219	NMC885803	RR 235	9/21/2004
NV101312611	NV101312611	NMC886275	NMC885803	RR 291	9/22/2004
NV101312612	NV101312612	NMC886276	NMC885803	RR 292	9/22/2004
NV101312613	NV101312613	NMC886277	NMC885803	RR 293	9/22/2004
NV101312614	NV101312614	NMC886278	NMC885803	RR 294	9/22/2004
NV101312615	NV101312615	NMC886279	NMC885803	RR 295	9/22/2004
NV101312616	NV101312616	NMC886280	NMC885803	RR 296	9/22/2004
NV101312617	NV101312617	NMC886281	NMC885803	RR 297	9/22/2004
NV101312618	NV101312618	NMC886282	NMC885803	RR 298	9/22/2004
NV101312619	NV101312619	NMC886283	NMC885803	RR 299	9/22/2004
NV101312620	NV101312620	NMC886284	NMC885803	RR 300	9/22/2004
NV101312621	NV101312621	NMC886285	NMC885803	RR 301	9/22/2004
NV101313801	NV101313801	NMC886286	NMC885803	RR 302	9/22/2004
NV101313802	NV101313802	NMC886287	NMC885803	RR 303	9/22/2004
NV101313803	NV101313803	NMC886288	NMC885803	RR 304	9/22/2004
NV101313804	NV101313804	NMC886289	NMC885803	RR 305	9/22/2004
NV101313805	NV101313805	NMC886290	NMC885803	RR 306	9/22/2004
NV101313806	NV101313806	NMC886291	NMC885803	RR 307	9/22/2004
NV101313807	NV101313807	NMC886292	NMC885803	RR 308	9/22/2004
NV101313808	NV101313808	NMC886293	NMC885803	RR 309	9/22/2004
NV101313809	NV101313809	NMC886294	NMC885803	RR 310	9/22/2004
NV101313810	NV101313810	NMC886295	NMC885803	RR 311	9/22/2004
NV101313811	NV101313811	NMC886296	NMC885803	RR 312	9/22/2004
NV101313812	NV101313812	NMC886297	NMC885803	RR 313	9/22/2004
NV101313813	NV101313813	NMC886298	NMC885803	RR 314	9/22/2004
NV101313814	NV101313814	NMC886299	NMC885803	RR 315	9/22/2004

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101313815	NV101313815	NMC886300	NMC885803	RR 316	9/22/2004
NV101313821	NV101313821	NMC886306	NMC885803	RR 322	9/22/2004
NV101315001	NV101315001	NMC886307	NMC885803	RR 323	9/22/2004
NV101315002	NV101315002	NMC886308	NMC885803	RR 324	9/22/2004
NV101315003	NV101315003	NMC886309	NMC885803	RR 325	9/22/2004
NV101315004	NV101315004	NMC886310	NMC885803	RR 326	9/22/2004
NV101315005	NV101315005	NMC886311	NMC885803	RR 327	9/22/2004
NV101315006	NV101315006	NMC886312	NMC885803	RR 328	9/22/2004
NV101315007	NV101315007	NMC886313	NMC885803	RR 329	9/22/2004
NV101315008	NV101315008	NMC886314	NMC885803	RR 330	9/22/2004
NV101315009	NV101315009	NMC886315	NMC885803	RR 331	9/22/2004
NV101315010	NV101315010	NMC886316	NMC885803	RR 332	9/22/2004
NV101315201	NV101315201	NMC886317	NMC885803	RR 333	9/22/2004
NV101315202	NV101315202	NMC886318	NMC885803	RR 334	9/22/2004
NV101315203	NV101315203	NMC886319	NMC885803	RR 335	9/22/2004
NV101315204	NV101315204	NMC886320	NMC885803	RR 336	9/22/2004
NV101315205	NV101315205	NMC886321	NMC885803	RR 337	9/22/2004
NV101315206	NV101315206	NMC886322	NMC885803	RR 338	9/22/2004
NV101315207	NV101315207	NMC886323	NMC885803	RR 339	9/22/2004
NV101315208	NV101315208	NMC886324	NMC885803	RR 340	9/22/2004
NV101315209	NV101315209	NMC886325	NMC885803	RR 341	9/22/2004
NV101315210	NV101315210	NMC886326	NMC885803	RR 342	9/22/2004
NV101315211	NV101315211	NMC886327	NMC885803	RR 343	9/22/2004
NV101316201	NV101316201	NMC886328	NMC885803	RR 344	9/22/2004
NV101316202	NV101316202	NMC886329	NMC885803	RR 345	9/22/2004
NV101316203	NV101316203	NMC886330	NMC885803	RR 346	9/22/2004
NV101316204	NV101316204	NMC886331	NMC885803	RR 347	9/22/2004
NV101316205	NV101316205	NMC886332	NMC885803	RR 348	9/22/2004
NV101316206	NV101316206	NMC886333	NMC885803	RR 349	9/22/2004
NV101316207	NV101316207	NMC886334	NMC885803	RR 350	9/22/2004
NV101316208	NV101316208	NMC886335	NMC885803	RR 351	9/22/2004
NV101316209	NV101316209	NMC886336	NMC885803	RR 352	9/22/2004
NV101316210	NV101316210	NMC886337	NMC885803	RR 353	9/22/2004
NV101316211	NV101316211	NMC886338	NMC885803	RR 354	9/22/2004
NV101316212	NV101316212	NMC886339	NMC885803	RR 355	9/22/2004
NV101316213	NV101316213	NMC886340	NMC885803	RR 356	9/22/2004
NV101653070	NV101653070	NMC884220	NMC884217	PS 4	9/24/2004
NV101653071	NV101653071	NMC884221	NMC884217	PS 5	9/24/2004
NV101653072	NV101653072	NMC884222	NMC884217	PS 6	9/24/2004
NV101732096	NV101732096	NMC915443	NMC915442	RR 364	9/14/2005

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101732097	NV101732097	NMC915444	NMC915442	RR 365	9/14/2005
NV101732098	NV101732098	NMC915445	NMC915442	RR 366	9/14/2005
NV101732099	NV101732099	NMC915446	NMC915442	RR 367	9/14/2005
NV101732100	NV101732100	NMC915447	NMC915442	RR 368	9/14/2005
NV101732101	NV101732101	NMC915448	NMC915442	RR 369	9/14/2005
NV101732102	NV101732102	NMC915449	NMC915442	RR 370	9/14/2005
NV101732103	NV101732103	NMC915450	NMC915442	RR 371	9/14/2005
NV101732104	NV101732104	NMC915451	NMC915442	RR 372	9/14/2005
NV101732105	NV101732105	NMC915452	NMC915442	RR 373	9/14/2005
NV101732106	NV101732106	NMC915453	NMC915442	RR 374	9/14/2005
NV101732107	NV101732107	NMC915454	NMC915442	RR 375	9/14/2005
NV101733114	NV101733114	NMC915455	NMC915442	RR 376	9/14/2005
NV101733115	NV101733115	NMC915456	NMC915442	RR 377	9/14/2005
NV101733116	NV101733116	NMC915457	NMC915442	RR 378	9/14/2005
NV101733117	NV101733117	NMC915458	NMC915442	RR 379	9/14/2005
NV101733118	NV101733118	NMC915459	NMC915442	RR 380	9/14/2005
NV101733119	NV101733119	NMC915460	NMC915442	RR 381	9/14/2005
NV101733120	NV101733120	NMC915461	NMC915442	RR 382	9/14/2005
NV101733121	NV101733121	NMC915462	NMC915442	RR 383	9/14/2005
NV101733122	NV101733122	NMC915463	NMC915442	RR 384	9/14/2005
NV101733123	NV101733123	NMC915464	NMC915442	RR 385	9/14/2005
NV101733124	NV101733124	NMC915465	NMC915442	RR 386	9/14/2005
NV101733125	NV101733125	NMC915466	NMC915442	RR 387	9/14/2005
NV101733126	NV101733126	NMC915467	NMC915442	RR 388	9/14/2005
NV101733127	NV101733127	NMC915468	NMC915442	RR 389	9/14/2005
NV101733128	NV101733128	NMC915469	NMC915442	RR 390	9/14/2005
NV101733129	NV101733129	NMC915470	NMC915442	RR 391	9/14/2005
NV101733130	NV101733130	NMC915471	NMC915442	RR 392	9/14/2005
NV101734120	NV101734120	NMC915472	NMC915442	RR 393	9/14/2005
NV101734121	NV101734121	NMC915473	NMC915442	RR 394	9/14/2005
NV101734122	NV101734122	NMC915474	NMC915442	RR 395	9/14/2005
NV101734123	NV101734123	NMC915477	NMC915442	RR 398	9/14/2005
NV101734124	NV101734124	NMC915478	NMC915442	RR 399	9/14/2005
NV101734125	NV101734125	NMC915479	NMC915442	RR 400	9/14/2005
NV101734126	NV101734126	NMC915480	NMC915442	RR 401	9/14/2005
NV101734127	NV101734127	NMC915481	NMC915442	RR 402	9/14/2005
NV101734128	NV101734128	NMC915482	NMC915442	RR 403	9/14/2005
NV101734129	NV101734129	NMC915483	NMC915442	RR 404	9/14/2005
NV101734130	NV101734130	NMC915484	NMC915442	RR 405	9/14/2005
NV101734131	NV101734131	NMC915485	NMC915442	RR 406	9/14/2005

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101734132	NV101734132	NMC915486	NMC915442	RR 407	9/14/2005
NV101734133	NV101734133	NMC915487	NMC915442	RR 408	9/14/2005
NV101734134	NV101734134	NMC915488	NMC915442	RR 409	9/14/2005
NV101734135	NV101734135	NMC915489	NMC915442	RR 410	9/14/2005
NV101734136	NV101734136	NMC915490	NMC915442	RR 411	9/14/2005
NV101734243	NV101734243	NMC915491	NMC915442	RR 412	9/14/2005
NV101734244	NV101734244	NMC915492	NMC915442	RR 413	9/14/2005
NV101859092	NV101859092	NMC915442	NMC915442	RR 363	9/14/2005
NV101734245	NV101734245	NMC915493	NMC915442	RR 414	9/15/2005
NV101734246	NV101734246	NMC915494	NMC915442	RR 415	9/15/2005
NV101734247	NV101734247	NMC915495	NMC915442	RR 416	9/15/2005
NV101735295	NV101735295	NMC915496	NMC915442	RR 417	9/15/2005
NV101735296	NV101735296	NMC915497	NMC915442	RR 418	9/15/2005
NV101735297	NV101735297	NMC915498	NMC915442	RR 419	9/15/2005
NV101735298	NV101735298	NMC915499	NMC915442	RR 420	9/15/2005
NV101735299	NV101735299	NMC915500	NMC915442	RR 421	9/15/2005
NV101735300	NV101735300	NMC915501	NMC915442	RR 422	9/15/2005
NV101735301	NV101735301	NMC915502	NMC915442	RR 423	9/15/2005
NV101735302	NV101735302	NMC915503	NMC915442	RR 424	9/15/2005
NV101735303	NV101735303	NMC915504	NMC915442	RR 425	9/15/2005
NV101735304	NV101735304	NMC915505	NMC915442	RR 426	9/15/2005
NV101735305	NV101735305	NMC915506	NMC915442	RR 427	9/15/2005
NV101735306	NV101735306	NMC915507	NMC915442	RR 428	9/15/2005
NV101735307	NV101735307	NMC915508	NMC915442	RR 429	9/15/2005
NV101735308	NV101735308	NMC915509	NMC915442	RR 430	9/15/2005
NV101735309	NV101735309	NMC915510	NMC915442	RR 431	9/15/2005
NV101735310	NV101735310	NMC915511	NMC915442	RR 432	9/15/2005
NV101735311	NV101735311	NMC915512	NMC915442	RR 433	9/15/2005
NV101735312	NV101735312	NMC915513	NMC915442	RR 434	9/15/2005
NV101735313	NV101735313	NMC915514	NMC915442	RR 435	9/15/2005
NV101735314	NV101735314	NMC915515	NMC915442	RR 436	9/15/2005
NV101737867	NV101737867	NMC919822	NMC919770	RR 441	10/26/2005
NV101737868	NV101737868	NMC919823	NMC919770	RR 442	10/26/2005
NV101737869	NV101737869	NMC919824	NMC919770	RR 443	10/26/2005
NV101737870	NV101737870	NMC919825	NMC919770	RR 444	10/26/2005
NV101737871	NV101737871	NMC919826	NMC919770	RR 445	10/26/2005
NV101737872	NV101737872	NMC919827	NMC919770	RR 446	10/26/2005
NV101737873	NV101737873	NMC919828	NMC919770	RR 447	10/26/2005
NV101737874	NV101737874	NMC919829	NMC919770	RR 448	10/26/2005
NV101737875	NV101737875	NMC919830	NMC919770	RR 449	10/26/2005

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101737876	NV101737876	NMC919831	NMC919770	RR 450	10/26/2005
NV101738884	NV101738884	NMC919850	NMC919770	RR 469	10/26/2005
NV101738885	NV101738885	NMC919851	NMC919770	RR 470	10/26/2005
NV101738886	NV101738886	NMC919852	NMC919770	RR 471	10/26/2005
NV101738887	NV101738887	NMC919853	NMC919770	RR 472	10/26/2005
NV101738888	NV101738888	NMC919854	NMC919770	RR 473	10/26/2005
NV101738889	NV101738889	NMC919855	NMC919770	RR 474	10/26/2005
NV101738890	NV101738890	NMC919856	NMC919770	RR 475	10/26/2005
NV101738891	NV101738891	NMC919857	NMC919770	RR 476	10/26/2005
NV101738892	NV101738892	NMC919858	NMC919770	RR 477	10/26/2005
NV101738893	NV101738893	NMC919859	NMC919770	RR 478	10/26/2005
NV101737877	NV101737877	NMC919832	NMC919770	RR 451	10/27/2005
NV101737878	NV101737878	NMC919833	NMC919770	RR 452	10/27/2005
NV101737879	NV101737879	NMC919834	NMC919770	RR 453	10/27/2005
NV101737880	NV101737880	NMC919835	NMC919770	RR 454	10/27/2005
NV101737881	NV101737881	NMC919836	NMC919770	RR 455	10/27/2005
NV101737882	NV101737882	NMC919837	NMC919770	RR 456	10/27/2005
NV101737883	NV101737883	NMC919838	NMC919770	RR 457	10/27/2005
NV101737884	NV101737884	NMC919839	NMC919770	RR 458	10/27/2005
NV101737885	NV101737885	NMC919840	NMC919770	RR 459	10/27/2005
NV101737886	NV101737886	NMC919841	NMC919770	RR 460	10/27/2005
NV101737887	NV101737887	NMC919842	NMC919770	RR 461	10/27/2005
NV101738877	NV101738877	NMC919843	NMC919770	RR 462	10/27/2005
NV101738878	NV101738878	NMC919844	NMC919770	RR 463	10/27/2005
NV101738879	NV101738879	NMC919845	NMC919770	RR 464	10/27/2005
NV101738880	NV101738880	NMC919846	NMC919770	RR 465	10/27/2005
NV101738881	NV101738881	NMC919847	NMC919770	RR 466	10/27/2005
NV101738882	NV101738882	NMC919848	NMC919770	RR 467	10/27/2005
NV101738883	NV101738883	NMC919849	NMC919770	RR 468	10/27/2005
NV101733474	NV101733474	NMC919798	NMC919770	JAK 208	10/28/2005
NV101733475	NV101733475	NMC919799	NMC919770	JAK 209	10/28/2005
NV101733476	NV101733476	NMC919800	NMC919770	JAK 210	10/28/2005
NV101733477	NV101733477	NMC919801	NMC919770	JAK 211	10/28/2005
NV101733478	NV101733478	NMC919802	NMC919770	JAK 212	10/28/2005
NV101733479	NV101733479	NMC919803	NMC919770	JAK 213	10/28/2005
NV101733480	NV101733480	NMC919804	NMC919770	JAK 214	10/28/2005
NV101733481	NV101733481	NMC919805	NMC919770	JAK 215	10/28/2005
NV101733482	NV101733482	NMC919806	NMC919770	JAK 216	10/28/2005
NV101733483	NV101733483	NMC919807	NMC919770	JAK 217	10/28/2005
NV101733484	NV101733484	NMC919808	NMC919770	JAK 218	10/28/2005

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101733485	NV101733485	NMC919809	NMC919770	JAK 219	10/28/2005
NV101733486	NV101733486	NMC919810	NMC919770	JAK 220	10/28/2005
NV101733487	NV101733487	NMC919811	NMC919770	JAK 221	10/28/2005
NV101733488	NV101733488	NMC919816	NMC919770	JAK 226	10/28/2005
NV101733489	NV101733489	NMC919817	NMC919770	JAK 227	10/28/2005
NV101733490	NV101733490	NMC919818	NMC919770	JAK 228	10/28/2005
NV101733491	NV101733491	NMC919819	NMC919770	JAK 229	10/28/2005
NV101733492	NV101733492	NMC919820	NMC919770	JAK 230	10/28/2005
NV101733493	NV101733493	NMC919821	NMC919770	JAK 231	10/28/2005
NV101732487	NV101732487	NMC919790	NMC919770	JAK 200	10/29/2005
NV101732488	NV101732488	NMC919791	NMC919770	JAK 201	10/29/2005
NV101732489	NV101732489	NMC919792	NMC919770	JAK 202	10/29/2005
NV101732490	NV101732490	NMC919793	NMC919770	JAK 203	10/29/2005
NV101732491	NV101732491	NMC919794	NMC919770	JAK 204	10/29/2005
NV101732492	NV101732492	NMC919795	NMC919770	JAK 205	10/29/2005
NV101732493	NV101732493	NMC919796	NMC919770	JAK 206	10/29/2005
NV101733473	NV101733473	NMC919797	NMC919770	JAK 207	10/29/2005
NV101852461	NV101852461	NMC919786	NMC919770	JAK 196	10/29/2005
NV101852462	NV101852462	NMC919787	NMC919770	JAK 197	10/29/2005
NV101852463	NV101852463	NMC919788	NMC919770	JAK 198	10/29/2005
NV101852464	NV101852464	NMC919789	NMC919770	JAK 199	10/29/2005
NV101341210	NV101341210	NMC1050984	NMC1050984	PS-1	8/7/2011
NV101341211	NV101341211	NMC1050985	NMC1050984	PS-2	8/7/2011
NV101341212	NV101341212	NMC1050986	NMC1050984	PS-3	8/7/2011
NV101341213	NV101341213	NMC1050987	NMC1050984	PS-7	8/7/2011
NV101508716	NV101508716	NMC1075880	NMC1075880	UMP 1	4/30/2012
NV101508717	NV101508717	NMC1075881	NMC1075880	UMP 2	4/30/2012
NV101508718	NV101508718	NMC1075882	NMC1075880	UMP 3	4/30/2012
NV101508719	NV101508719	NMC1075883	NMC1075880	UMP 4	4/30/2012
NV101508720	NV101508720	NMC1075884	NMC1075880	UMP 5	4/30/2012
NV101509934	NV101509934	NMC1075885	NMC1075880	UMP 6	4/30/2012
NV101509935	NV101509935	NMC1075886	NMC1075880	UMP 7	4/30/2012
NV101509936	NV101509936	NMC1075887	NMC1075880	UMP 8	4/30/2012
NV101509937	NV101509937	NMC1075888	NMC1075880	UMP 9	4/30/2012
NV101509938	NV101509938	NMC1075889	NMC1075880	UMP 10	4/30/2012
NV101509939	NV101509939	NMC1075890	NMC1075880	UMP 11	4/30/2012
NV101509940	NV101509940	NMC1075891	NMC1075880	UMP 12	4/30/2012
NV101509941	NV101509941	NMC1075892	NMC1075880	UMP 13	4/30/2012
NV101509942	NV101509942	NMC1075893	NMC1075880	UMP 14	4/30/2012
NV101509943	NV101509943	NMC1075894	NMC1075880	UMP 15	4/30/2012

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101509944	NV101509944	NMC1075895	NMC1075880	UMP 16	4/30/2012
NV101509945	NV101509945	NMC1075896	NMC1075880	UMP 17	4/30/2012
NV101509946	NV101509946	NMC1075897	NMC1075880	UMP 18	4/30/2012
NV101509947	NV101509947	NMC1075898	NMC1075880	UMP 19	4/30/2012
NV101509948	NV101509948	NMC1075899	NMC1075880	UMP 20	4/30/2012
NV101509949	NV101509949	NMC1075900	NMC1075880	UMP 21	4/30/2012
NV101509950	NV101509950	NMC1075901	NMC1075880	UMP 22	4/30/2012
NV101509951	NV101509951	NMC1075902	NMC1075880	UMP 23	4/30/2012
NV101509952	NV101509952	NMC1075903	NMC1075880	UMP 24	4/30/2012
NV101734896	NV101734896	NMC1147184	NMC1147161	TFL 24	4/26/2017
NV101734897	NV101734897	NMC1147185	NMC1147161	TFL 25	4/26/2017
NV101734898	NV101734898	NMC1147186	NMC1147161	TFL 26	4/26/2017
NV101734899	NV101734899	NMC1147187	NMC1147161	TFL 27	4/26/2017
NV101734900	NV101734900	NMC1147188	NMC1147161	TFL 28	4/26/2017
NV101734901	NV101734901	NMC1147189	NMC1147161	TFL 29	4/26/2017
NV101734902	NV101734902	NMC1147190	NMC1147161	TFL 30	4/26/2017
NV101734903	NV101734903	NMC1147191	NMC1147161	TFL 31	4/26/2017
NV101734904	NV101734904	NMC1147192	NMC1147161	TFL 32	4/26/2017
NV101734905	NV101734905	NMC1147193	NMC1147161	TFL 33	4/26/2017
NV101734906	NV101734906	NMC1147194	NMC1147161	TFL 34	4/26/2017
NV101734907	NV101734907	NMC1147195	NMC1147161	TFL 35	4/26/2017
NV101734908	NV101734908	NMC1147196	NMC1147161	TFL 36	4/26/2017
NV101734909	NV101734909	NMC1147197	NMC1147161	TFL 37	4/26/2017
NV101734910	NV101734910	NMC1147198	NMC1147161	TFL 38	4/26/2017
NV101734911	NV101734911	NMC1147199	NMC1147161	TFL 39	4/26/2017
NV101734912	NV101734912	NMC1147200	NMC1147161	TFL 40	4/26/2017
NV101734913	NV101734913	NMC1147201	NMC1147161	TFL 41	4/26/2017
NV101734914	NV101734914	NMC1147202	NMC1147161	TFL 42	4/26/2017
NV101734915	NV101734915	NMC1147203	NMC1147161	TFL 43	4/26/2017
NV101734916	NV101734916	NMC1147204	NMC1147161	TFL 44	4/26/2017
NV101735950	NV101735950	NMC1147205	NMC1147161	TFL 45	4/26/2017
NV101735951	NV101735951	NMC1147206	NMC1147161	TFL 46	4/26/2017
NV101735952	NV101735952	NMC1147207	NMC1147161	TFL 47	4/26/2017
NV101735953	NV101735953	NMC1147208	NMC1147161	TFL 48	4/26/2017
NV101735954	NV101735954	NMC1147209	NMC1147161	TFL 49	4/26/2017
NV101735955	NV101735955	NMC1147210	NMC1147161	TFL 50	4/26/2017
NV101735956	NV101735956	NMC1147211	NMC1147161	TFL 51	4/26/2017
NV101735957	NV101735957	NMC1147212	NMC1147161	TFL 52	4/26/2017
NV101735958	NV101735958	NMC1147213	NMC1147161	TFL 53	4/26/2017
NV101735959	NV101735959	NMC1147214	NMC1147161	TFL 54	4/26/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101735960	NV101735960	NMC1147215	NMC1147161	TFL 55	4/26/2017
NV101735961	NV101735961	NMC1147216	NMC1147161	TFL 56	4/26/2017
NV101735962	NV101735962	NMC1147217	NMC1147161	TFL 57	4/26/2017
NV101735963	NV101735963	NMC1147218	NMC1147161	TFL 58	4/26/2017
NV101735964	NV101735964	NMC1147219	NMC1147161	TFL 59	4/26/2017
NV101735965	NV101735965	NMC1147220	NMC1147161	TFL 60	4/26/2017
NV101735966	NV101735966	NMC1147221	NMC1147161	TFL 61	4/26/2017
NV101857086	NV101857086	NMC1147167	NMC1147161	TFL 7	4/26/2017
NV101857087	NV101857087	NMC1147168	NMC1147161	TFL 8	4/26/2017
NV101857088	NV101857088	NMC1147169	NMC1147161	TFL 9	4/26/2017
NV101857089	NV101857089	NMC1147170	NMC1147161	TFL 10	4/26/2017
NV101857090	NV101857090	NMC1147171	NMC1147161	TFL 11	4/26/2017
NV101857091	NV101857091	NMC1147172	NMC1147161	TFL 12	4/26/2017
NV101857092	NV101857092	NMC1147173	NMC1147161	TFL 13	4/26/2017
NV101857093	NV101857093	NMC1147174	NMC1147161	TFL 14	4/26/2017
NV101857094	NV101857094	NMC1147175	NMC1147161	TFL 15	4/26/2017
NV101857095	NV101857095	NMC1147176	NMC1147161	TFL 16	4/26/2017
NV101857096	NV101857096	NMC1147177	NMC1147161	TFL 17	4/26/2017
NV101857097	NV101857097	NMC1147178	NMC1147161	TFL 18	4/26/2017
NV101857098	NV101857098	NMC1147179	NMC1147161	TFL 19	4/26/2017
NV101857099	NV101857099	NMC1147180	NMC1147161	TFL 20	4/26/2017
NV101857100	NV101857100	NMC1147181	NMC1147161	TFL 21	4/26/2017
NV101857101	NV101857101	NMC1147182	NMC1147161	TFL 22	4/26/2017
NV101857102	NV101857102	NMC1147183	NMC1147161	TFL 23	4/26/2017
NV101855978	NV101855978	NMC1147161	NMC1147161	TFL 1	4/27/2017
NV101855979	NV101855979	NMC1147162	NMC1147161	TFL 2	4/27/2017
NV101857082	NV101857082	NMC1147163	NMC1147161	TFL 3	4/27/2017
NV101857083	NV101857083	NMC1147164	NMC1147161	TFL 4	4/27/2017
NV101857084	NV101857084	NMC1147165	NMC1147161	TFL 5	4/27/2017
NV101857085	NV101857085	NMC1147166	NMC1147161	TFL 6	4/27/2017
NV101736149	NV101736149	NMC1148973	NMC1148807	P 190	6/25/2017
NV101736150	NV101736150	NMC1148974	NMC1148807	P 191	6/25/2017
NV101736151	NV101736151	NMC1148975	NMC1148807	P 222	6/25/2017
NV101736152	NV101736152	NMC1148976	NMC1148807	P 223	6/29/2017
NV101736153	NV101736153	NMC1148977	NMC1148807	P 224	6/29/2017
NV101736154	NV101736154	NMC1148978	NMC1148807	P 225	6/29/2017
NV101736155	NV101736155	NMC1148979	NMC1148807	P 226	6/29/2017
NV101737275	NV101737275	NMC1148980	NMC1148807	P 227	6/29/2017
NV101737276	NV101737276	NMC1148981	NMC1148807	P 228	6/29/2017
NV101856125	NV101856125	NMC1148807	NMC1148807	P1	7/6/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101856126	NV101856126	NMC1148808	NMC1148807	P 2	7/6/2017
NV101856127	NV101856127	NMC1148809	NMC1148807	P 3	7/6/2017
NV101856128	NV101856128	NMC1148810	NMC1148807	P 4	7/6/2017
NV101856129	NV101856129	NMC1148811	NMC1148807	P 5	7/6/2017
NV101856130	NV101856130	NMC1148812	NMC1148807	P6	7/6/2017
NV101856131	NV101856131	NMC1148813	NMC1148807	P 7	7/6/2017
NV101856132	NV101856132	NMC1148814	NMC1148807	P 8	7/6/2017
NV101856133	NV101856133	NMC1148815	NMC1148807	P 9	7/6/2017
NV101856134	NV101856134	NMC1148816	NMC1148807	P 10	7/6/2017
NV101856135	NV101856135	NMC1148817	NMC1148807	P 11	7/6/2017
NV101856136	NV101856136	NMC1148818	NMC1148807	P 12	7/6/2017
NV101856137	NV101856137	NMC1148819	NMC1148807	P 13	7/6/2017
NV101857209	NV101857209	NMC1148820	NMC1148807	P 14	7/6/2017
NV101857210	NV101857210	NMC1148821	NMC1148807	P 15	7/6/2017
NV101857211	NV101857211	NMC1148822	NMC1148807	P 16	7/6/2017
NV101857212	NV101857212	NMC1148823	NMC1148807	P 19	7/6/2017
NV101857213	NV101857213	NMC1148824	NMC1148807	P 20	7/6/2017
NV101857214	NV101857214	NMC1148825	NMC1148807	P 21	7/6/2017
NV101857215	NV101857215	NMC1148826	NMC1148807	P 22	7/6/2017
NV101857216	NV101857216	NMC1148827	NMC1148807	P 23	7/6/2017
NV101857217	NV101857217	NMC1148828	NMC1148807	P 24	7/6/2017
NV101857218	NV101857218	NMC1148829	NMC1148807	P 25	7/6/2017
NV101857219	NV101857219	NMC1148830	NMC1148807	P 26	7/6/2017
NV101857220	NV101857220	NMC1148831	NMC1148807	P 27	7/6/2017
NV101857221	NV101857221	NMC1148832	NMC1148807	P 28	7/6/2017
NV101857222	NV101857222	NMC1148833	NMC1148807	P 29	7/6/2017
NV101857223	NV101857223	NMC1148834	NMC1148807	P 30	7/6/2017
NV101857224	NV101857224	NMC1148835	NMC1148807	P 31	7/6/2017
NV101857225	NV101857225	NMC1148836	NMC1148807	P 32	7/6/2017
NV101857226	NV101857226	NMC1148837	NMC1148807	P 33	7/6/2017
NV101857227	NV101857227	NMC1148838	NMC1148807	P 34	7/6/2017
NV101733959	NV101733959	NMC1148938	NMC1148807	P 154	7/24/2017
NV101733960	NV101733960	NMC1148939	NMC1148807	P 155	7/24/2017
NV101733961	NV101733961	NMC1148940	NMC1148807	P 156	7/24/2017
NV101733962	NV101733962	NMC1148941	NMC1148807	P 157	7/24/2017
NV101733963	NV101733963	NMC1148942	NMC1148807	P 158	7/24/2017
NV101733964	NV101733964	NMC1148943	NMC1148807	P 159	7/24/2017
NV101733965	NV101733965	NMC1148944	NMC1148807	P 160	7/24/2017
NV101733966	NV101733966	NMC1148945	NMC1148807	P 161	7/24/2017
NV101733967	NV101733967	NMC1148946	NMC1148807	P 162	7/24/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101733968	NV101733968	NMC1148947	NMC1148807	P 163	7/24/2017
NV101733969	NV101733969	NMC1148948	NMC1148807	P 164	7/24/2017
NV101733970	NV101733970	NMC1148949	NMC1148807	P 165	7/24/2017
NV101733971	NV101733971	NMC1148950	NMC1148807	P 166	7/24/2017
NV101733972	NV101733972	NMC1148951	NMC1148807	P 167	7/24/2017
NV101733973	NV101733973	NMC1148952	NMC1148807	P 168	7/24/2017
NV101733974	NV101733974	NMC1148953	NMC1148807	P 169	7/24/2017
NV101733975	NV101733975	NMC1148954	NMC1148807	P 170	7/24/2017
NV101733976	NV101733976	NMC1148955	NMC1148807	P 171	7/24/2017
NV101733977	NV101733977	NMC1148956	NMC1148807	P 172	7/24/2017
NV101733978	NV101733978	NMC1148957	NMC1148807	P 173	7/24/2017
NV101857228	NV101857228	NMC1148914	NMC1148807	P 130	7/24/2017
NV101857229	NV101857229	NMC1148915	NMC1148807	P 131	7/24/2017
NV101857230	NV101857230	NMC1148916	NMC1148807	P 132	7/24/2017
NV101858278	NV101858278	NMC1148917	NMC1148807	P 133	7/24/2017
NV101858279	NV101858279	NMC1148918	NMC1148807	P 134	7/24/2017
NV101858280	NV101858280	NMC1148919	NMC1148807	P 135	7/24/2017
NV101858281	NV101858281	NMC1148920	NMC1148807	P 136	7/24/2017
NV101858282	NV101858282	NMC1148921	NMC1148807	P 137	7/24/2017
NV101858283	NV101858283	NMC1148922	NMC1148807	P 138	7/24/2017
NV101858284	NV101858284	NMC1148923	NMC1148807	P 139	7/24/2017
NV101858285	NV101858285	NMC1148924	NMC1148807	P 140	7/24/2017
NV101858286	NV101858286	NMC1148925	NMC1148807	P 141	7/24/2017
NV101858287	NV101858287	NMC1148926	NMC1148807	P 142	7/24/2017
NV101858288	NV101858288	NMC1148927	NMC1148807	P 143	7/24/2017
NV101858289	NV101858289	NMC1148928	NMC1148807	P 144	7/24/2017
NV101858290	NV101858290	NMC1148929	NMC1148807	P 145	7/24/2017
NV101858291	NV101858291	NMC1148930	NMC1148807	P 146	7/24/2017
NV101858292	NV101858292	NMC1148931	NMC1148807	P 147	7/24/2017
NV101858293	NV101858293	NMC1148932	NMC1148807	P 148	7/24/2017
NV101858294	NV101858294	NMC1148933	NMC1148807	P 149	7/24/2017
NV101858295	NV101858295	NMC1148934	NMC1148807	P 150	7/24/2017
NV101858296	NV101858296	NMC1148935	NMC1148807	P 151	7/24/2017
NV101858297	NV101858297	NMC1148936	NMC1148807	P 152	7/24/2017
NV101858298	NV101858298	NMC1148937	NMC1148807	P 153	7/24/2017
NV101733979	NV101733979	NMC1148958	NMC1148807	P 174	7/25/2017
NV101736135	NV101736135	NMC1148959	NMC1148807	P 175	7/25/2017
NV101736136	NV101736136	NMC1148960	NMC1148807	P 176	7/25/2017
NV101736137	NV101736137	NMC1148961	NMC1148807	P 177	7/25/2017
NV101736138	NV101736138	NMC1148962	NMC1148807	P 178	7/25/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101736139	NV101736139	NMC1148963	NMC1148807	P 179	7/25/2017
NV101736140	NV101736140	NMC1148964	NMC1148807	P 180	7/25/2017
NV101736141	NV101736141	NMC1148965	NMC1148807	P 181	7/25/2017
NV101736142	NV101736142	NMC1148966	NMC1148807	P 182	7/25/2017
NV101736143	NV101736143	NMC1148967	NMC1148807	P 184	7/25/2017
NV101736144	NV101736144	NMC1148968	NMC1148807	P 185	7/25/2017
NV101736145	NV101736145	NMC1148969	NMC1148807	P 186	7/25/2017
NV101736146	NV101736146	NMC1148970	NMC1148807	P 187	7/25/2017
NV101736147	NV101736147	NMC1148971	NMC1148807	P 188	7/25/2017
NV101736148	NV101736148	NMC1148972	NMC1148807	P 189	7/25/2017
NV101737278	NV101737278	NMC1148983	NMC1148807	P 230	7/25/2017
NV101739352	NV101739352	NMC1149009	NMC1148807	P 261	7/25/2017
NV101739354	NV101739354	NMC1149011	NMC1148807	P 263	7/25/2017
NV101739356	NV101739356	NMC1149013	NMC1148807	P 265	7/25/2017
NV101739358	NV101739358	NMC1149015	NMC1148807	P 267	7/25/2017
NV101739362	NV101739362	NMC1149019	NMC1148807	P 271	7/25/2017
NV101850499	NV101850499	NMC1149021	NMC1148807	P 273	7/25/2017
NV101739351	NV101739351	NMC1149008	NMC1148807	P 260	7/26/2017
NV101739353	NV101739353	NMC1149010	NMC1148807	P 262	7/26/2017
NV101739355	NV101739355	NMC1149012	NMC1148807	P 264	7/26/2017
NV101739357	NV101739357	NMC1149014	NMC1148807	P 266	7/26/2017
NV101739359	NV101739359	NMC1149016	NMC1148807	P 268	7/26/2017
NV101739360	NV101739360	NMC1149017	NMC1148807	P 269	7/26/2017
NV101739361	NV101739361	NMC1149018	NMC1148807	P 270	7/26/2017
NV101739363	NV101739363	NMC1149020	NMC1148807	P 272	7/26/2017
NV101850500	NV101850500	NMC1149022	NMC1148807	P 274	7/26/2017
NV101850502	NV101850502	NMC1149024	NMC1148807	P 282	7/26/2017
NV101850504	NV101850504	NMC1149026	NMC1148807	P 284	7/26/2017
NV101850506	NV101850506	NMC1149028	NMC1148807	P 286	7/26/2017
NV101850508	NV101850508	NMC1149030	NMC1148807	P 288	7/26/2017
NV101850510	NV101850510	NMC1149032	NMC1148807	P 290	7/26/2017
NV101850511	NV101850511	NMC1149033	NMC1148807	P 291	7/26/2017
NV101850512	NV101850512	NMC1149034	NMC1148807	P 292	7/26/2017
NV101850513	NV101850513	NMC1149035	NMC1148807	P 293	7/26/2017
NV101850514	NV101850514	NMC1149036	NMC1148807	P 294	7/26/2017
NV101850515	NV101850515	NMC1149037	NMC1148807	P 295	7/26/2017
NV101850516	NV101850516	NMC1149038	NMC1148807	P 296	7/26/2017
NV101850517	NV101850517	NMC1149039	NMC1148807	P 297	7/26/2017
NV101850518	NV101850518	NMC1149040	NMC1148807	P 298	7/26/2017
NV101851584	NV101851584	NMC1149041	NMC1148807	P 299	7/26/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101851585	NV101851585	NMC1149042	NMC1148807	P 300	7/26/2017
NV101851586	NV101851586	NMC1149043	NMC1148807	P 301	7/26/2017
NV101851587	NV101851587	NMC1149044	NMC1148807	P 302	7/26/2017
NV101851588	NV101851588	NMC1149045	NMC1148807	P 303	7/26/2017
NV101851589	NV101851589	NMC1149046	NMC1148807	P 304	7/26/2017
NV101851590	NV101851590	NMC1149047	NMC1148807	P 305	7/26/2017
NV101851591	NV101851591	NMC1149048	NMC1148807	P 306	7/26/2017
NV101851592	NV101851592	NMC1149049	NMC1148807	P 313	7/26/2017
NV101851593	NV101851593	NMC1149050	NMC1148807	P 314	7/26/2017
NV101851594	NV101851594	NMC1149051	NMC1148807	P 315	7/26/2017
NV101851595	NV101851595	NMC1149052	NMC1148807	P 316	7/26/2017
NV101851596	NV101851596	NMC1149053	NMC1148807	P 317	7/26/2017
NV101851597	NV101851597	NMC1149054	NMC1148807	P 318	7/26/2017
NV101851598	NV101851598	NMC1149055	NMC1148807	P 319	7/26/2017
NV101851599	NV101851599	NMC1149056	NMC1148807	P 320	7/26/2017
NV101851600	NV101851600	NMC1149057	NMC1148807	P 321	7/26/2017
NV101851693	NV101851693	NMC1149058	NMC1148807	P 322	7/26/2017
NV101851694	NV101851694	NMC1149059	NMC1148807	P 323	7/26/2017
NV101851695	NV101851695	NMC1149060	NMC1148807	P 324	7/26/2017
NV101851696	NV101851696	NMC1149061	NMC1148807	P 325	7/26/2017
NV101737293	NV101737293	NMC1148998	NMC1148807	P 250	7/27/2017
NV101737294	NV101737294	NMC1148999	NMC1148807	P 251	7/27/2017
NV101737295	NV101737295	NMC1149000	NMC1148807	P 252	7/27/2017
NV101739344	NV101739344	NMC1149001	NMC1148807	P 253	7/27/2017
NV101739345	NV101739345	NMC1149002	NMC1148807	P 254	7/27/2017
NV101739346	NV101739346	NMC1149003	NMC1148807	P 255	7/27/2017
NV101739347	NV101739347	NMC1149004	NMC1148807	P 256	7/27/2017
NV101739348	NV101739348	NMC1149005	NMC1148807	P 257	7/27/2017
NV101739349	NV101739349	NMC1149006	NMC1148807	P 258	7/27/2017
NV101739350	NV101739350	NMC1149007	NMC1148807	P 259	7/27/2017
NV101850501	NV101850501	NMC1149023	NMC1148807	P 281	7/27/2017
NV101850503	NV101850503	NMC1149025	NMC1148807	P 283	7/27/2017
NV101850505	NV101850505	NMC1149027	NMC1148807	P 285	7/27/2017
NV101850507	NV101850507	NMC1149029	NMC1148807	P 287	7/27/2017
NV101850509	NV101850509	NMC1149031	NMC1148807	P 289	7/27/2017
NV101737282	NV101737282	NMC1148987	NMC1148807	P 234	7/29/2017
NV101557201	NV101557201	NMC1149066	NMC1148807	P 334	8/9/2017
NV101557202	NV101557202	NMC1149067	NMC1148807	P 335	8/9/2017
NV101737277	NV101737277	NMC1148982	NMC1148807	P 229	8/9/2017
NV101737279	NV101737279	NMC1148984	NMC1148807	P 231	8/9/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101737280	NV101737280	NMC1148985	NMC1148807	P 232	8/9/2017
NV101737281	NV101737281	NMC1148986	NMC1148807	P 233	8/9/2017
NV101737283	NV101737283	NMC1148988	NMC1148807	P 235	8/9/2017
NV101737284	NV101737284	NMC1148989	NMC1148807	P 236	8/9/2017
NV101737285	NV101737285	NMC1148990	NMC1148807	P 237	8/9/2017
NV101737286	NV101737286	NMC1148991	NMC1148807	P 238	8/9/2017
NV101737287	NV101737287	NMC1148992	NMC1148807	P 239	8/9/2017
NV101737288	NV101737288	NMC1148993	NMC1148807	P 240	8/9/2017
NV101737289	NV101737289	NMC1148994	NMC1148807	P 241	8/9/2017
NV101737290	NV101737290	NMC1148995	NMC1148807	P 242	8/9/2017
NV101737291	NV101737291	NMC1148996	NMC1148807	P 243	8/9/2017
NV101557203	NV101557203	NMC1149068	NMC1148807	P 336	8/10/2017
NV101557204	NV101557204	NMC1149069	NMC1148807	P 337	8/10/2017
NV101557205	NV101557205	NMC1149070	NMC1148807	P 338	8/10/2017
NV101737292	NV101737292	NMC1148997	NMC1148807	P 249	8/10/2017
NV101852732	NV101852732	NMC1149062	NMC1148807	P 326	8/10/2017
NV101852733	NV101852733	NMC1149063	NMC1148807	P 327	8/10/2017
NV101852734	NV101852734	NMC1149064	NMC1148807	P 328	8/10/2017
NV101852735	NV101852735	NMC1149065	NMC1148807	P 333	8/10/2017
NV101358159	NV101358159	NMC1153325	NMC1153310	P 51	9/11/2017
NV101358160	NV101358160	NMC1153326	NMC1153310	P 52	9/11/2017
NV101358161	NV101358161	NMC1153327	NMC1153310	P 53	9/11/2017
NV101358162	NV101358162	NMC1153328	NMC1153310	P 54	9/11/2017
NV101358163	NV101358163	NMC1153329	NMC1153310	P 192	9/11/2017
NV101358164	NV101358164	NMC1153330	NMC1153310	P 193	9/11/2017
NV101358165	NV101358165	NMC1153331	NMC1153310	P 194	9/11/2017
NV101358166	NV101358166	NMC1153332	NMC1153310	P 195	9/11/2017
NV101358167	NV101358167	NMC1153333	NMC1153310	P 196	9/11/2017
NV101358168	NV101358168	NMC1153334	NMC1153310	P 197	9/11/2017
NV101358169	NV101358169	NMC1153335	NMC1153310	P 198	9/11/2017
NV101358170	NV101358170	NMC1153336	NMC1153310	P 199	9/11/2017
NV101358171	NV101358171	NMC1153337	NMC1153310	P 200	9/11/2017
NV101358172	NV101358172	NMC1153338	NMC1153310	P 201	9/11/2017
NV101358173	NV101358173	NMC1153339	NMC1153310	P 202	9/11/2017
NV101358174	NV101358174	NMC1153340	NMC1153310	P 203	9/11/2017
NV101358175	NV101358175	NMC1153341	NMC1153310	P 204	9/11/2017
NV101358176	NV101358176	NMC1153342	NMC1153310	P 205	9/11/2017
NV101358177	NV101358177	NMC1153343	NMC1153310	P 206	9/11/2017
NV101358178	NV101358178	NMC1153344	NMC1153310	P 207	9/11/2017
NV101358179	NV101358179	NMC1153345	NMC1153310	P 208	9/11/2017

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101359158	NV101359158	NMC1153346	NMC1153310	P 209	9/11/2017
NV101359159	NV101359159	NMC1153347	NMC1153310	P 210	9/11/2017
NV101359160	NV101359160	NMC1153348	NMC1153310	P 211	9/11/2017
NV101359161	NV101359161	NMC1153349	NMC1153310	P 212	9/11/2017
NV101359162	NV101359162	NMC1153350	NMC1153310	P 213	9/11/2017
NV101359163	NV101359163	NMC1153351	NMC1153310	P 214	9/11/2017
NV101359164	NV101359164	NMC1153352	NMC1153310	P 215	9/11/2017
NV101359165	NV101359165	NMC1153353	NMC1153310	P 216	9/11/2017
NV101359166	NV101359166	NMC1153354	NMC1153310	P 217	9/11/2017
NV101359167	NV101359167	NMC1153355	NMC1153310	P 218	9/11/2017
NV101359168	NV101359168	NMC1153356	NMC1153310	P 219	9/11/2017
NV101359169	NV101359169	NMC1153357	NMC1153310	P 220	9/11/2017
NV101359170	NV101359170	NMC1153358	NMC1153310	P 221	9/11/2017
NV101716882	NV101716882	NMC1153310	NMC1153310	P 17	9/11/2017
NV101716883	NV101716883	NMC1153311	NMC1153310	P 18	9/11/2017
NV101716884	NV101716884	NMC1153312	NMC1153310	P 35	9/11/2017
NV101716885	NV101716885	NMC1153313	NMC1153310	P 36	9/11/2017
NV101716886	NV101716886	NMC1153314	NMC1153310	P 40	9/11/2017
NV101716887	NV101716887	NMC1153315	NMC1153310	P 41	9/11/2017
NV101716888	NV101716888	NMC1153316	NMC1153310	P 42	9/11/2017
NV101716889	NV101716889	NMC1153317	NMC1153310	P 43	9/11/2017
NV101716890	NV101716890	NMC1153318	NMC1153310	P 44	9/11/2017
NV101716891	NV101716891	NMC1153319	NMC1153310	P 45	9/11/2017
NV101716892	NV101716892	NMC1153320	NMC1153310	P 46	9/11/2017
NV101716893	NV101716893	NMC1153321	NMC1153310	P 47	9/11/2017
NV101869675	NV101869675	NMC1153322	NMC1153310	P 48	9/11/2017
NV101869676	NV101869676	NMC1153323	NMC1153310	P 49	9/11/2017
NV101869677	NV101869677	NMC1153324	NMC1153310	P 50	9/11/2017
NV101784589	NV101784589	NMC1174595	NMC1174595	P 182	5/21/2018
NV101784590	NV101784590	NMC1174596	NMC1174595	P 284	5/21/2018
NV101550822	NV101550822	NMC1177588	NMC1177565	P 373	7/9/2018
NV101550823	NV101550823	NMC1177589	NMC1177565	P 374	7/9/2018
NV101550826	NV101550826	NMC1177592	NMC1177565	P 377	7/9/2018
NV101550827	NV101550827	NMC1177593	NMC1177565	P 378	7/9/2018
NV101550828	NV101550828	NMC1177594	NMC1177565	P 379	7/9/2018
NV101550829	NV101550829	NMC1177595	NMC1177565	P 380	7/9/2018
NV101550830	NV101550830	NMC1177596	NMC1177565	P 381	7/9/2018
NV101550831	NV101550831	NMC1177597	NMC1177565	P 382	7/9/2018
NV101550832	NV101550832	NMC1177598	NMC1177565	P 383	7/9/2018
NV101550833	NV101550833	NMC1177599	NMC1177565	P 384	7/9/2018

Serial Number	Lead File Number	Legacy Serial Number	Legacy Lead File Number	Claim Name	Date Of Location
NV101550834	NV101550834	NMC1177600	NMC1177565	P 385	7/9/2018
NV101550835	NV101550835	NMC1177601	NMC1177565	P 386	7/9/2018
NV101550836	NV101550836	NMC1177602	NMC1177565	P 387	7/9/2018
NV101550837	NV101550837	NMC1177603	NMC1177565	P 388	7/9/2018
NV101550838	NV101550838	NMC1177604	NMC1177565	P 389	7/9/2018
NV101550839	NV101550839	NMC1177605	NMC1177565	P 390	7/9/2018
NV101550840	NV101550840	NMC1177606	NMC1177565	P 391	7/9/2018
NV101550841	NV101550841	NMC1177607	NMC1177565	P 392	7/9/2018
NV101550842	NV101550842	NMC1177608	NMC1177565	P 393	7/9/2018
NV101550824	NV101550824	NMC1177590	NMC1177565	P 375	7/10/2018
NV101550825	NV101550825	NMC1177591	NMC1177565	P 376	7/10/2018
NV101869828	NV101869828	NMC1177579	NMC1177565	P 364	7/10/2018
NV101869829	NV101869829	NMC1177580	NMC1177565	P 365	7/10/2018
NV101869830	NV101869830	NMC1177581	NMC1177565	P 366	7/10/2018
NV101869831	NV101869831	NMC1177582	NMC1177565	P 367	7/10/2018
NV101869832	NV101869832	NMC1177583	NMC1177565	P 368	7/10/2018
NV101869833	NV101869833	NMC1177584	NMC1177565	P 369	7/10/2018
NV101869834	NV101869834	NMC1177585	NMC1177565	P 370	7/10/2018
NV101717039	NV101717039	NMC1177565	NMC1177565	P 350	7/19/2018
NV101717040	NV101717040	NMC1177566	NMC1177565	P 351	7/19/2018
NV101869816	NV101869816	NMC1177567	NMC1177565	P 352	7/19/2018
NV101869817	NV101869817	NMC1177568	NMC1177565	P 353	7/19/2018
NV101869818	NV101869818	NMC1177569	NMC1177565	P 354	7/19/2018
NV101869819	NV101869819	NMC1177570	NMC1177565	P 355	7/19/2018
NV101869820	NV101869820	NMC1177571	NMC1177565	P 356	7/19/2018
NV101869821	NV101869821	NMC1177572	NMC1177565	P 357	7/19/2018
NV101869822	NV101869822	NMC1177573	NMC1177565	P 358	7/19/2018
NV101869823	NV101869823	NMC1177574	NMC1177565	P 359	7/19/2018
NV101869824	NV101869824	NMC1177575	NMC1177565	P 360	7/19/2018
NV101869825	NV101869825	NMC1177576	NMC1177565	P 361	7/19/2018
NV101869826	NV101869826	NMC1177577	NMC1177565	P 362	7/19/2018
NV101869827	NV101869827	NMC1177578	NMC1177565	P 363	7/19/2018
NV101869835	NV101869835	NMC1177586	NMC1177565	P 371	7/19/2018
NV101869836	NV101869836	NMC1177587	NMC1177565	P 372	7/19/2018